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Abstract
Cotton (Gossypium hirsutum), a crop of immense global economic importance, faces substantial yield and quality losses due 
to insect pests such as Spodoptera exigua and Pectinophora gossypiella. Conventional pesticide strategies are increasingly 
unsustainable owing to environmental concerns, economic inefficiencies, and pest resistance. This study investigates the 
potential of cry1Ac, a gene derived from Bacillus thuringiensis (Bt), in developing insect-resistant transgenic cotton. Utilizing 
Agrobacterium-mediated transformation, cry1Ac was introduced into cotton under the regulation of a wound-inducible 
promoter (AoPR1), enabling localized expression and mitigating ecological risks associated with constitutive expression. 
Molecular analyses confirmed successful gene integration and expression, while bioassays demonstrated enhanced resistance, 
with transgenic lines achieving 80–90% pest mortality compared to negligible effects in controls. Insights into resistance 
mechanisms, including mutations in pest cadherin genes such as PgCad1, were explored alongside emerging RNA interference 
(RNAi)-based approaches for resistance management. Field evaluations corroborated the effectiveness of transgenic cotton in 
controlling target pests, while also identifying challenges posed by non-target pest adaptations and climatic variability. This 
research underscores the significance of wound-inducible promoters and integrative pest management strategies, offering a 
sustainable framework for developing resilient cotton varieties capable of addressing evolving pest pressures.
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1. Introduction 
Archaeological evidence indicates that cotton has been used by 
humans for more than 4000 yr. The history of cotton cultivation is 
at least 3000 years old. There are four cultivated cotton species, two 
diploid species and two tetraploid species [1]. Among four cotton 
crops, G. hirsutum and G. arboreum are cultivated worldwide in 
more than 90% of the total land under cotton cultivation [2]. Cotton 
is a product having great economic importance for humanity with 
its widespread and compulsory usage and having added value and 
creating employment opportunities for the producer countries 
[3]. As the raw material, cotton is utilized by several industries 
including the ginnery industry with processing practices, the 
textile industry with the usage of its fiber, the oil and feed industry 
with the usage of its seed, and the paper industry with the usage of 
its linter [4]. Cottonseed is among the leading oilseed groups along 
with soybean, rapeseed, peanut and sunflower. Because of specific 
diseases, problems arising out of pests and weeds cause significant 
product losses, and the measures to be taken against them lead to 
the cost of the product to increase and this affects the cotton sector 
especially in economic terms [5]. At the present time, the volume 
of pesticide usage is about 3,000,000 tonnes globally, and nearly 
40 billion USD is spent each year. Herein, cotton producers around 
the world spend 2.6 billion USD each year for pesticide usage. 
This corresponds to more than 10% of worldwide pesticide usage 
and nearly 25% of the world’s insecticide usage each year [6]. 

Reducing insecticide usage, maintaining of crop yield and earliness 
of maturity, keeping of susceptibility of pests to new selective 
insecticides, being practical and workable in the context of the 
whole farming system, and being effective both for conventional 
cotton and transgenic (Bt) varieties are the pest management 
challenges standing in front of the cotton industry and integrated 
management system could provide effective solutions for these 
challenges [7]. Conventional methods of pest control, including 
chemical pesticides, have been widely utilized but come with 
associated drawbacks such as environmental pollution, harmful 
effects on non-target organisms, and the development of pest 
resistance [8]. To address these issues, researchers have been 
exploring alternative strategies, including genetic engineering, 
to enhance plant resistance against insect pests while minimizing 
ecological harm [9-12]. One such approach involves the 
introduction of specific insecticidal genes into the plant genome, 
a process known as genetic transformation. Among the genes 
commonly employed for this purpose is cry1Ac, which encodes 
a protein toxic to certain insect pests. Cry1Ac is derived from the 
soil bacterium Bacillus thuringiensis (Bt) and has been widely 
used in genetically modified (GM) crops to confer resistance 
against lepidopteran and coleopteran pests [13]. 

To tackle the problems of insect’s threat, many different foreign 
gene(s) have been introduced into cotton genome successfully 
to encode resistance against insect pests. Among these BT [14-
16]. In the context of cotton cultivation, the expression of cry1Ac 
via Agrobacterium-mediated genetic transformation presents 
a promising strategy for enhancing resistance against chewing 
insects. By introducing the cry1Ac gene into Gossypium hirsutum, 

researchers aim to equip the plant with the ability to produce 
the Cry1Ac protein, which acts as a potent insecticide against 
susceptible pests upon ingestion. This study aims to investigate 
the efficacy of cry1Ac expression in Gossypium hirsutum 
against chewing insects, with a focus on assessing the impact 
of genetic transformation on pest resistance, plant performance, 
and agronomic traits. By elucidating the mechanisms underlying 
cry1Ac-mediated insect resistance in cotton, this research 
contributes to the development of sustainable pest management 
strategies in agriculture [17]. The majority of transgenic crops 
available commercially worldwide typically incorporate foreign 
genes controlled by the CaMV 35S promoter. This promoter is 
renowned for its ability to trigger robust gene expression across 
various tissue types and at different growth stages of the crop, 
ensuring consistently high levels of gene activity [18]. The constant 
expression of introduced gene may also increase the potential risk 
of evolvement of resistance in target insects. We have already 
started witnessing reports of resistance evolvement in pests against 
Bt genes [19]. See the table in which pest resistant against Bt genes 
pink bollworm table. The analysis of GUS reporter gene activity 
in transgenic tobacco plants revealed that the AoPR1 promoter 
becomes active in response to various stimuli, including wounding, 
pathogen invasion, and hydrogen peroxide treatment. Thus, 
focused gene expression is crucial for future value-added crop 
development, as it may enhance public acceptance of transgenic 
traits [17,20]. This study aimed to create insect-resistant cotton 
lines with localized expression of the insecticidal gene cry1Ac, 
regulated by the wound-responsive promoter AoPR1, offering a 
promising approach for insect management.

2. Materials and Methods
2.1.  Plant Material
Gossypium hirsutum CEMB Klean Cotton (CKC-01), FH NIAB-
878 was selected for this study on account of its germination and 
resistant against chewing insects. 

2.2.  Delinting and Screening of Seeds
Delinting is a process used to completely eliminate fuzz from seed 
coat from cotton seed .100ml / kg is a concentration of sulphuric 
acid (H2SO4). When seeds were poured in a beaker 20 ml of acid 
was added and (80 ml distilled water) whole the solution was 
mixed by continuously stirring of spatula for 7-10 times until the 
lint was removed. Wash the seeds for 5-7 times with tap water 
to completely remove the residue of acid. Some of the seed was 
floated and some seeds sink. Only sinker seed was selected for 
further processing. After that damaged seed was removed. Dirt 
and other trash must be removed. Select healthy seeds having 
no injuries and defects or disease free cotton seed was taken for 
soaking. 

2.3.  Soaking and Washing
Put the selected seed in a flask. Add some autoclaved distilled water 
along with One drop of SDS and 5 to 10 ml mercuric chloride. 
Rinse the seeds gently to disinfect them and discard the water. 
Wash seeds three to four times with autoclave distilled water. 
Discard water and dry the class on the burner to remove moisture 
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from the flask. Cover the mouth of the flask with aluminum foil and 
incubate it overnight at 37°C. Take a soaked flask to the laminar air 
flow cabinet and remove contaminated seeds and the seeds having 
fungal growth from the flask. After that next day for washing 
purpose add distilled water along with 5 to 10 ml of mercuric 
chloride. Rinse the seeds with distilled water and mercury chloride 
gently and discard the solution. Wash seeds three to four times 
with distilled water. Discard water and remove moisture from the 
flask by heating it on the burner. Cover the mouth of flask with 
aluminum foil and incubate it overnight at 37°C. 

2.4.  Construction of Recombinant Vector
The Full- length cry1Ac gene cassette under CaMV35S promotor 
and NOS terminator with XhoI and SacI restriction sites were 
chemically synthesized by BioBasic Inc and provided in pUC57 
cloning vector. The recombinant vector containing gene cassette 
was transformed into the competent cells of E. coli (strain Top 10) 
through the heat shock method. The DNA (500 ng) of recombinant 
plasmid was restricted with FastDigest XhoI and FastDigest SacI 
restriction enzymes The excised product was resolved on 0.8% 
agarose gel and purified through Thermo Scientific Gene JET Gel 
Extraction Kit. Schematic representation of plant constructs is 
shown below 

2.5.  Preparation of Cultures for Plant Transformation 
Prepare YEP media. Take 25 ml of it in falcon tubes and add 25 
µlRifamycine+ Kanamycine. as a selection. Add a small microliter 
volume of Agrobacterium stock. (Always use freshly prepared 
solutions) Put it on a shaker overnight. Next day centrifuge the 
overnight grown culture. Discard supernatant and dissolve pallets 
in simple MS media. 

2.6. Agrobacterium Mediated Genetic Transformation of 
Cotton
Healthy and well germinated seeds to the cutting bench. Excised the 
embryo and injure it in case of indirect method of agrobacterium- 
mediated transformation. In case of direct method of agrobacterium 
mediated transformation injures the embryo along with seed. Put 
injured cotton embryos and seeds in a prepared transformation 
culture and place it on rotatory Shaker for at 28 °C for 2 h. For 
indirect methods of Agrobacterium mediated transformation cotton 
embryos were co-cultivated with MS-zero broth in a rotary shaker 
at 28 °C for 2 h and transferred on MS medium plates containing 
250 µg/mL cefotaxime to avoid bacterial contamination. After 3 to 
4 days transfer embryos grown in petri plates to test tubes having 
growth media until 2 to 3 leaf stage. When plants reach 2 to 3 
leaf stage then transfer them to pots with well-prepared soil and 
cover them with polythene bags. For direct transformation sow the 
seeds with autoclave loamy soil containing an equal volume of 
peat moss, fungicide, sand and clay and wrapped with transparent 
bags to maintain the humidity. Acclimatize plants by gradually 
increasing their time to interact with the atmosphere in the lab.

2.7.  Molecular Analysis of Putative Transgenic Cotton Plants 
Polymerase chain reaction (PCR) was conducted using gene-
specific primers to amplify fragments of cry1Ac, AoPR1, and 
BAR genes from putative transgenic cotton plants. Genomic DNA 
was extracted. PCR reactions were carried out in a total volume 
of 50μL, comprising 10X reaction buffer, 5ng of DNA template, 

25 mM MgCl2, 0.7 nmol of each dNTP, 25pmol of each primer, 
and 5 unit of Taq DNA polymerase along Tris buffer with 10mM 
conc. Primer sequences, annealing temperatures, and product 
sizes are detailed in Table 1. Plasmid DNA served as the positive 
control, while DNA from untransformed plants served as the 
negative control. Amplified DNA fragments were separated by 
electrophoresis on a 2.0% agarose gel and visualized through 
ethidium bromide staining under ultraviolet (UV) light. 

2.8.  Protein Expression Analysis 
A double-antibody sandwich enzyme-linked immunosorbent 
assay (ELISA) was employed to measure the accumulated levels 
of cry1Ac protein in the leaves of putative transgenic plants. 
Transformants leaves contain construct collected for protein 
quantification. Optical density (OD) measurements at 430 nm 
were utilized to determine the concentration of cry1Ac protein by 
comparison with a standard cry1Ac protein reference. 

2.9.  Detection of Transgenes
Foreign gene copy number and localization in transgenic cotton 
plants were assessed via Fluorescence in situ Hybridization (FISH), 
with fluorescent signal detection conducted using a fluorescent 
microscope equipped with a blue filter for 4′,6-Diamidino-2-
phenylindole dihydrochloride (DAPI) dye.

2.10. Insect Mortality Bioassays
The transgenic cotton plants of T0 generation were exposed to 
leaf-detach insect bioassays to assess the individual efficacy of 
insecticidal toxins against Spodoptera exigua. One fresh leaf of 
non-transgenic and transgenic cotton plants was placed in petri 
dishes containing wet filter papers. Three 2nd instar larvae of 
Spodoptera exigua were released on cotton leaves. The sealed petri 
plates were put in a culture room at 25 ± 2 °C and 16 h light: 8 h of 
the dark cycle along with ≈ 60% humidity. The percent mortality 
was calculated on the third day of infestation.
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Treatment Group Initial Insect Count Final Insect Count Mortality (%)
Control 23 20 13%
Transgenic 25 4 84%

Table 1: Insects Mortality Bioassays on 3rd Day of Infestation 

2.11. Treatment Group:
This column refers to the different experimental groups or 
conditions being tested in the study. Each treatment group 
represents a unique set of conditions or interventions applied to 
the subjects (in this case, insects infesting cotton leaves).

2.12. Replicate
Replicate refers to the repetition of an experimental condition 
within the same treatment group. Each replicate helps to account 
for variability and to strengthen the statistical analysis of the 
results. It ensures that the findings are not due to random chance or 
specific conditions of a single experiment.

2.13. Initial Insect Count:
This represents the number of insects initially introduced or 
counted at the beginning of the experiment in each replicate of 
the treatment group. It serves as the baseline for assessing the 
effectiveness of the treatment.

2.14. Final Insect Count:
Final insect count indicates the number of surviving insects 

remaining after a specified period, in this case, on the 3rd day of 
infestation. It is crucial for evaluating the impact of the treatment 
on insect populations.

2.15. Mortality (%):
Mortality percentage is calculated by comparing the initial and 
final insect counts. It represents the proportion of insects that died 
during the course of the experiment, typically due to the treatment 
applied. It is calculated using the formula: 
Mortality (%)=(1−Final Insect Count/Initial Insect Count)×100.

3. Results and Discussion 
3.1. Evaluation of Primary Transformants 
The primary putative transgenic plants that grew well in growth 
room and for the confirmation of presence of introduced cry1Ac 
gene in cotton genome along with promoter and selectable marker 
gene. The results were showed that required band of 412bp of 
cry1Ac in primary transformants marked and subjected to further 
analysis. 

Mortality percentage is calculated by comparing the initial and final insect counts. It represents 
the proportion of insects that died during the course of the experiment, typically due to the 
treatment applied. It is calculated using the formula: 

Mortality (%)=(1−Final Insect Count/Initial Insect Count)×100

RESULTS and DISCUSSION 

Evaluation of primary transformants 
The primary putative transgenic plants that grew well in growth room and for the confirmation of 
presence of introduced cry1Ac gene in cotton genome along with promoter and selectable marker 
gene. The results were showed that required band of 412bp of cry1Ac in primary transformants 
marked and subjected to further analysis. 

Fig1. : Molecular analysis of transgenic cotton plants, amplification of cry1Ac in transformed 
plants 

Fig2. : Invitro conducted experiment to attack of chewing insects on non-transgenic and 
transgenic cotton leaves of selected cultivars. The transgenic plants showed low level of 
resistance against Spodoptera exigua.

Figure 1: Molecular analysis of Transgenic Cotton Plants, Amplification of Cry1ac in Transformed Plants 

Figure 2: Invitro conducted experiment to attack of chewing insects on non-transgenic and transgenic cotton leaves of selected cultivars. 
The transgenic plants showed low level of resistance against Spodoptera exigua.

Mortality percentage is calculated by comparing the initial and final insect counts. It represents 
the proportion of insects that died during the course of the experiment, typically due to the 
treatment applied. It is calculated using the formula: 

Mortality (%)=(1−Final Insect Count/Initial Insect Count)×100

RESULTS and DISCUSSION 

Evaluation of primary transformants 
The primary putative transgenic plants that grew well in growth room and for the confirmation of 
presence of introduced cry1Ac gene in cotton genome along with promoter and selectable marker 
gene. The results were showed that required band of 412bp of cry1Ac in primary transformants 
marked and subjected to further analysis. 

Fig1. : Molecular analysis of transgenic cotton plants, amplification of cry1Ac in transformed 
plants 

Fig2. : Invitro conducted experiment to attack of chewing insects on non-transgenic and 
transgenic cotton leaves of selected cultivars. The transgenic plants showed low level of 
resistance against Spodoptera exigua.
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Fig3. : Pectinophora gossypiella attack on BT Cotton the resistant in pink bollworm against 
BT due to mutations in cadherin genes of threat agriculture pest. Different genes in mutations 
like PgCad1, ATP-binding cassette transporter protein PgABCA2, r15A and r15B, 
PgCad1 alleles (r1-r20), PgABCC2. Mutation in the Cadherin gene Is a key Factor for Pink 
Bollworm resistance to Bt Cotton in China (Wang et al., 2022; Arshad et al., 2024c). Another 
study reported that Transposon insertion causes cadherin mis-splicing and confers resistance to 
Bt cotton in pink bollworm from China (Wang et al., 2019b). Previous work with laboratory- and 
field-selected pink bollworm indicated that resistance to Cry1Ac is caused by changes in the 
amino acid sequence of a midgut cadherin protein (PgCad1) that binds Cry1Ac in susceptible 
larvae. The ability of Pink bollworm and other major insects pest presents challenges for 
monitoring and managing resistance to Bt crops (Fabrick et al., 2020; Pervaiz et al., 2024). There 
could be the 5 cadherin repeated mutations associated with bt resistance  in a field-derived strain 
of pink bollworm (Wang et al., 2020b)(Gao et al., 2018). We report on a novel allele (r16) of the 
cadherin gene (PgCad1) in pink bollworm (Pectinophora gossypiella) associated with resistance 
to Bt toxin Cry1Ac, which is produced by transgenic cotton (Akhter et al., 2017; Wang et al., 
2019a;Fabrick et al., 2023).

Field evaluation of putative transgenic plants 

Figure 3: Pectinophora Gossypiella Attack on BT Cotton 

The resistant in pink bollworm against BT due to mutations 
in cadherin genes of threat agriculture pest. Different genes in 
mutations like PgCad1, ATP-binding cassette transporter protein 
PgABCA2, r15A and r15B, PgCad1 alleles (r1-r20), PgABCC2. 
Mutation in the Cadherin gene Is a key Factor for Pink Bollworm 
resistance to Bt Cotton in China [21,22]. Another study reported 
that Transposon insertion causes cadherin mis-splicing and 
confers resistance to Bt cotton in pink bollworm from China [23]. 
Previous work with laboratory- and field-selected pink bollworm 
indicated that resistance to Cry1Ac is caused by changes in the 

amino acid sequence of a midgut cadherin protein (PgCad1) that 
binds Cry1Ac in susceptible larvae. The ability of Pink bollworm 
and other major insects pest presents challenges for monitoring 
and managing resistance to Bt crops [24,25]. There could be the 
5 cadherin repeated mutations associated with bt resistance in 
a field-derived strain of pink bollworm [26,27]. We report on a 
novel allele (r16) of the cadherin gene (PgCad1) in pink bollworm 
(Pectinophora gossypiella) associated with resistance to Bt toxin 
Cry1Ac, which is produced by transgenic cotton [28-30]. 

Fig4, : Attack of Army worm and American bollworm on BT cotton, the 45 days of cotton 
leaves shows that with the passage of time BT shows no resistance against chewing insects like 
Spodoptera frugiperda and American boll worm.  

Graphical stages of Agrobacterium mediated genetic transformation of cotton 

Figure 4: Attack of Army worm and American bollworm on BT cotton, the 45 days of cotton leaves shows that with the passage of time 
BT shows no resistance against chewing insects like Spodoptera frugiperda and American boll worm. 
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3.3. Graphical Stages of Agrobacterium Mediated Genetic Transformation of Cotton 

   
Fig; 5(a) Delinting of seeds with pure sulphuric acid, (B) Embryo injury with surgical blades (C) 
shifting of embryo on MS media, (D) and E shows the embryo growing on media, (F) shifting 
the shoot on test tubes, (G) shows that prepare the sterilized antifungal soil with Thiophenate 
methyl and H shows shots formed from direct seed sowing in that soil, (I) shows that shifting the 
plants to the Invivo environment.  

Table.2. Insects mortality rate on 7th

Treatment 
Group

day of infestation
Insect Species Initial Insect 

Count
Final Insect 
Count

Mortality (%)

Non- transgenic Species A 50 42 20%

Species B 50 45 14

Transgenic
Species A 50 10 80%

Species B 50 5 90

Reasons- the downfall of BT Cotton There are many factors for the survival of threat pest 
Bemisia tabaci.
Temperature; Temperature is a primary factor that determines the eco-geographical distribution 
and population development of invasive insects. Our previous studies have shown that CAT 
promotes whitefly adaptation to high temperature by eliminating ROS (Liang et al., 2023). In 

Figure 5: (a) Delinting of seeds with pure sulphuric acid, (B) Embryo injury with surgical blades (C) shifting of embryo on MS media, 
(D) and E shows the embryo growing on media, (F) shifting the shoot on test tubes, (G) shows that prepare the sterilized antifungal soil 
with Thiophenate methyl and H shows shots formed from direct seed sowing in that soil, (I) shows that shifting the plants to the Invivo 
environment. 

Treatment Group Insect Species Initial Insect Count Final Insect Count Mortality (%)
Non- transgenic Species A 50 42 20%

Species B 50 45 14
Transgenic Species A 50 10 80%

Species B 50 5 90

Table 2: Insects Mortality Rate On 7th Day of Infestation

3.4. Reasons- the Downfall of Bt Cotton There are Many 
Factors for the Survival of Threat Pest Bemisia Tabaci.
Temperature: Temperature is a primary factor that determines 
the eco-geographical distribution and population development 
of invasive insects. Our previous studies have shown that CAT 
promotes whitefly adaptation to high temperature by eliminating 
ROS [31]. In this study, we investigated the role of CAT at 
different temperature 25 °C, 20 °C, and 4 °C. Silencing of BtCATs 
significantly increased the sensitivity of B. tabaci MED to low 
temperatures [32]. The results showed that invasive whiteflies had 
a significantly lower heat resistance after silencing BtCYP 4C1 
and BtCar3. In addition, whiteflies had a higher cold tolerance 
after silencing BtCYP 4C1 [33]. These results indicate that BtCYP 

4C1 and BtCar3 are key regulators in the temperature adaptation 
of B.

tabaci. Moreover, they may be key factors in influencing the 
geographical distribution and dispersal of B. tabaci as an invasive 
species in China [34]. In another study, the effects of elevated 
temperatures on BTQ's tolerance to the insecticide thiamethoxam 
were investigated. The high temperature influenced the tolerance 
of BTQ by affecting the activity of P450. Feeding on double-
stranded RNA (dsRNA) of CYP6CM1 significantly reduced the 
mRNA levels of the target gene in the adults, and dramatically 
decreased tolerance to thiamethoxam induced by a temperature of 
31 °C for 6 h [35-39]. 
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this study, we investigated the role of CAT at different temperature 25 °C, 20 °C, and 4 °C.
Silencing of BtCATs significantly increased the sensitivity of B. tabaci MED to low temperatures
(Ning et al., 2024). The results showed that invasive whiteflies had a significantly lower heat 
resistance after silencing BtCYP 4C1 and BtCar3. In addition, whiteflies had a higher cold 
tolerance after silencing BtCYP 4C1 (Rafeeq et al., 2020). These results indicate that BtCYP 
4C1 and BtCar3 are key regulators in the temperature adaptation of B. tabaci. Moreover, they 
may be key factors in influencing the geographical distribution and dispersal of B. tabaci as an 
invasive species in China (Shen et al., 2021). In another study, the effects of elevated 
temperatures on BTQ's tolerance to the insecticide thiamethoxam were investigated. The high 
temperature influenced the tolerance of BTQ by affecting the activity of P450. Feeding on 
double-stranded RNA (dsRNA) of CYP6CM1 significantly reduced the mRNA levels of the 
target gene in the adults, and dramatically decreased tolerance to thiamethoxam induced by a 
temperature of 31 °C for 6 h (Forres et al. , 2016;Guo et al., 2018;Shrestha et al., 
2019;Nyamukondiwa et al., 2022;Barman et al., 2023).

Atmospheric Carbon dioxide; Rise in atmospheric carbon dioxide concentration ([CO2]) and a 
warming climate are two of the most conspicuous characteristics of global climate change in this 
century. The independent effects of [CO2] enrichment  on the biology and physiology of 
herbivorous insects are well studied (Li et al., 2017). In the Figure effect of Carbon dioxide that 
how it increased the genes of White fly that could be lethal for crop species. 
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Atmospheric Carbon Dioxide: Rise in atmospheric carbon dioxide 
concentration ([CO2]) and a warming climate are two of the 
most conspicuous characteristics of global climate change in this 
century. The independent effects of [CO2] enrichment on the 

biology and physiology of herbivorous insects are well studied 
[40]. In the Figure effect of Carbon dioxide that how it increased 
the genes of White fly that could be lethal for crop species. 

PINK Bollworm: The pink bollworm, Pectinophora gossypiella 
(Saunders) (Lepidoptera: Gelechiidae), is a highly destructive 
insect pest of cotton across the global cotton-producing areas. 
The probable origin of pink bollworm is in the Indo-Pakistan 
region [41,42]. The commercial planting of Bt cotton effectively 
suppressed the population of pink bollworms. Furthermore, some 
field populations of pink bollworms have developed practical 
resistance to Bt cotton expressing Cry1Ac or even Bt cotton 
producing Cry1Ac and Cry2Ab, posing a serious threat to the 
sustainable use of transgenic Bt cotton [43]. Pink bollworm could 
be more serious threat for the survival of Cotton. Foliar pesticides 
like chlorpyrifos, esfenvalerate, lambda- cyhalothrin and bifenthrin 
used for pesticides on Pink bollworm. But due to their excessive 

used this pest have resistant against chemical insecticides. This 
chewing type pest contain insecticides detoxifying enzymes, so 
insects molecular biologist have taken a decision to knock off 
these genes by new emerging technology like RNA interference in 
the form of transgenic plants, to make the formulations as a foliar 
spray or inside the host insects. 

RNAi demonstrated a successful gene silencing in insects 
that led to the development of novel approaches for insect pest 
management to knock off the genes encoding vacuolar ATPase 
(V-ATPase) subunits a and c from the midgut of pink bollworm. 
200 ng of dsRNAs silenced both genes causing mortality of 18.9 
to 26.7% [44,45]. 
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Mutated Gene Resistant against genes References 
PgCad1, ATP-binding cassette transporter protein 
PgABCA2

 Cry1Ac, Cry2Ab (Tabashnik and Carrière, 2019;Wang et al., 
2020a;Fabrick et al., 2023) [46,47,30]

Cadherin alleles (r19 and r20) Cry1Ac (Wang et al., 2022) [21]
r15A and r15B Cry1Ac (Wang et al., 2019b) [23]
r14 allele of the pink bollworm cadherin gene (PgCad1) Cry1Ac (Wang et al., 2020b) [26]
r13PgCad1 Cry1Ac (Wang et al., 2018) [48]
PgABCA2 Cry2Ab (Mathew et al., 2018; Fabrick et al., 2021) [49,50]
PgCad1 alleles (r1-r20), PgABCC2 Cry1Ac, PgABCC2 confers low-level 

resistance to Cry1Ac
(Wang et al., 2024b) [41]

Table 3: Gene Mutations in Pink Bollworm

4. Conclusion 
This research highlights the potential of genetic transformation, 
specifically the integration of the cry1Ac gene under wound-
inducible promoters, as a sustainable and effective strategy for 
combating major insect pests in cotton cultivation. Transgenic 
cotton expressing cry1Ac demonstrated substantial resistance 
to chewing insects like Spodoptera exigua and Pectinophora 
gossypiella, achieving up to 90% mortality in bioassays. The 
use of a wound-responsive promoter (AoPR1) ensured localized 
expression, minimizing ecological concerns associated with 
constitutive expression of insecticidal genes. Despite these 
successes, the study underscores critical challenges, including the 
evolution of pest resistance through genetic mutations in targets 
such as the cadherin gene (PgCad1). Moreover, environmental 
factors like rising CO2 levels and fluctuating temperatures 
influence pest behavior and gene efficacy, complicating long-
term pest control strategies. RNA interference (RNAi) technology 
offers a complementary approach to address these issues, enabling 
precise gene silencing to mitigate pest resistance mechanisms. In 
conclusion, the integration of cry1Ac and novel genetic strategies in 
cotton offers a promising avenue for sustainable pest management. 
However, to ensure long-term efficacy, future efforts must focus on 
integrating transgenic approaches with RNAi, developing species-
specific strategies, and establishing comprehensive monitoring 
systems for resistance management. These advancements will be 
crucial for maintaining cotton yield and quality while reducing 
environmental impact and pesticide dependence [51].
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