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Abstract
The Ewald Oseen extinction theorem deals with the penetration of an electromagnetic wave from a vacuum into a polarizable and/
or magnetizable medium. It states that the incident electromagnetic wave penetrates into the medium without perturbation. Within 
the medium, there is a polarization and/or magnetization which create(s), (i), the reflected wave, (ii), a wave which extinguishes 
the incident wave in the medium, (iii), the observed wave(s) in the medium, and, (iv), the wave(s) leaving the medium. The question 
arises, what excites the medium? For the incident wave does it not because it does not interact with the medium. Thus, while being 
mathematically correct, that theorem is both physically and philosophically incorrect as the excitation used has no reason but is 
being imposed from nothing. Moreover, it contradicts Huygens’ principle according to which, (i), the incident wave is absent after 
having excited the sources of the secondary wavelets and, (ii), each secondary source re-irradiates only one secondary wavelet 
(in case of double refraction, two ones). This contradiction is examined in terms of, (i), propagators (following Feynman) and, 
(ii), the electric Hertz vector (following Zangwill, where his calculations are simplified). Being mathematically correct, it may be 
useful to treat the theorem “as if” (Vaihinger) it also were physically correct.  
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1. Introduction
When a light wave enters a material medium, it magnetizes and/or polarizes it. The excited medium re-irradiates light. In view of the 
linearity of the Maxwell equations for linear media, one could think that the total electromagnetic field in the medium is the sum of the 
original (incident, exciting) and the re-irradiated fields. Actually, the incident beam is not observed in the medium. The Ewald Oseen 
extinction theorem explains this absence in that the excited medium creates three waves: (i), one, which annihilates aka extincts the 
incoming wave, (ii), one that propagates trough the medium according to its optical properties, see Figure 1 (p. 8, Figure 4), and, (iii), 
the reflected wave [1-3].

Mansuripur comments, as if “the oscillating electrons conspire to produce a field that exactly cancels out the original beam everywhere 
in the medium” (p. 209). Now, it is hard to believe, that “electrons conspire” that way as this phenomenon has nothing to do with 
collective effects like Langmuir waves [4,5]. Huygens’ secondary wavelets consist of only one part which, however, depends on the 
local propagation conditions (double refraction needs additional considerations [6-9]). Of course, mathematically, due to the linearity of 
the Maxwell equations and the linear media usually considered in the literature, the electric and magnetic field quantities can be rather 
arbitrarily split and combined. Anyway, the theorem has been reconsidered several times and for various materials, e.g. to name a few, 
and it enters some textbooks, e.g. For a review of various interpretations of the extinction process, see [10,11].

Sein states, “. . . the extinction theorem is essentially an expression of Huygens’ principle for the incident field inside the medium.” 
According to Lian, if Huygens’ principle is mathematically formulated such that, in a vacuum or in homogeneous isotropic media, back-
scattering is absent, “it must satisfy” the extinction theorem (p. 5 II). Using simple cases, we will show that the extinction theorem and 
Huygens’ principle are mathematically equivalent but not physically.

Thus, to clarify the physical content of the Ewald Oseen extinction theorem and, in particular, its relationship to Huygens’ principle, 
this article proceeds as follows. Section II sketches the most general representation of Huygens’ principle in terms of propagators due
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FIG. 1. Ewald-Oseen Extinction Theorem for a dielectric: The incident pulse enters the medium

without perturbation (red line), the atoms irradiate waves

to Feynman [27]. Section III presents a novel representation of the extinction theorem using

that framework. For subsequent use, Section IV provides the Maxwell-Heaviside equations

and sketches the macroscopic and microscopic approaches for describing the polarization as

well as Hertz’s potential and the electric Hertz vector, where a novel hypothesis is proposed.

Basing on that, Section V treats the dielectric half-space, commenting on Born & Wolfs [25]

and Zangwill’s [26] treatments. Finally, Section VI summarizes and concludes this article.
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Figure 1: Ewald Oseen Extinction Theorem for a Dielectric

The incident pulse enters the medium without perturbation (red line), the atoms irradiate waves to Feynman. Section III presents a 
novel representation of the extinction theorem using that framework. For subsequent use, Section IV provides the Maxwell-Heaviside 
equations and sketches the macroscopic and microscopic approaches for describing the polarization as well as Hertz’s potential and the 
electric Hertz vector, where a novel hypothesis is proposed. Basing on that, Section V treats the dielectric half-space, commenting on 
Born & Wolfs and Zangwill’s treatments. Finally, Section VI summarizes and concludes this article.
 
It is a correction, clarification, and major extension of an earlier article by one of us [12-28].

2. Feynman’s Representation of Huygens’ Principle in Terms of Propagators
2.1 The Chapman-Kolmogorov Equation
According to Feynman, Huygens’ principle can be expressed through propagators Pab as

That means, Pac, representing the propagation from state (or space-time point) a to state c, can be constructed as a propagation, first, from 
the initial state a to all possible (accessible) intermediate states {b} and, then, from those to the final state c. The ‘primary waves’ {Pab} 
‘excite’ a certain set of states {b}, which irradiates the ‘secondary wavelets’ {Pbc} that sum up to the value of state c.

Formula (1) is a variant of the Chapman-Kolmogorov equation [29,30]. In the space-time domain, it reads

where G is an appropriate propagator aka Green’s function [31,32]. It generalizes Huygens’ construction from sharp to spreading wave 
fronts, where the domain of sources of secondary wavelets is not necessarily a surface but may be a finite volume Vb. Sharp wave fronts 
correspond to a δ-function in G whence the volume integral is reduced to a surface integral. In the usual representations of Huygens’ 
construction, this surface is the location of the secondary sources.

Notice that the Chapman-Kolmogorov equation (2) is not fulfilled by the Green’s function of d’Alembert’s (Euler’s) wave equation in 
3+1d. However, that does not mean that Huygens’ principle “is only approximately fulfilled in optics”. One has to transform a wave 
equation into two partial differential equations of first order in time and to analyze the corresponding matrix Green’s function.

2.2 Example
To illustrate that most general representation of Huygens’ principle, let us consider a very simple example, viz., a two-dimensional 
network of (ideally) lossless transmission lines, see Figure 2 [33].
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B. Example

To illustrate that most general representation of Huygens’ principle, let us consider a

very simple example, viz., a two-dimensional network of (ideally) lossless transmission lines,

see Figure 2 [33].

FIG. 2. 2D TLM mesh; left: incident pulse, middle: first scattering, right: second scattering

A node connects 4 lines, say, in the directions West, North, East, and South. Each line has

the impedance Z. A very short pulse of voltage 1 (arbitrary units) incident from the South

is scattered as follows.

• The pulse enters the node from a line with impedance Z. At the node, it meets three

lines with impedance Z each. Because they are parallel, their common impedance at

the node is 1
3
Z. For this, the reflection coefficient equals (a node works like a voltage

divider)

ρ =
1
3
Z − Z

1
3
Z + Z

= −1

2
. (3)

A pulse of voltage ρ = −1
2
will travel back to the Southern neighbor.

• The sum of the voltages of the 3 pulses transmitted towards West, North, and East,

respectively, amounts to the transmission coefficient (due to the continuity of voltage,

ρ+ τ = 1)

τ = 1− ρ = 3
2
. (4)

By virtue of symmetry, each transmitted pulse carries a voltage of τ
3
= 1

2
.
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Figure 2: 2D TLM Mesh; Left: Incident Pulse, Middle: First Scattering, Right: Second Scattering

A node connects 4 lines, say, in the directions West, North, East, and South. Each line has the impedance Z. A very short pulse of voltage 
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• At the moment of scattering, the voltage in the Southern line equals the sum of the voltages of the incident and reflected pulses,

Therefore, at the moment of scattering, all lines get one and same voltage           each. This reflects the symmetry of the node and Huygens’ 
principle [34]. The summing (5) has been discarded in and ρ2 = (τ/3)2 along all lines considered to represent Huygens’ principle [35,36].

In d dimensions, the reflection coefficient equals

The total voltage on the incoming line equals                            The transmitted pulses exhibit a voltage of

along each line. Again, the symmetry and the fulfillment of Huygens’ principle are obvious.

The voltage impulses in that network are described by a set of difference equations of first order in the propagation (time) step. Its 
fundamental solution is a discrete matrix Green’s function which obeys a Chapman-Kolmogorov equation [37].

BTW, TLM networks are (idealized) physical realizations of correlated random walks [38]. This makes their algorithms in numerical 
mathematics extremely stable.
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• At the moment of scattering, the voltage in the Southern line equals the sum of the

voltages of the incident and reflected pulses,

1 + ρ = 1
2
. (5)

Therefore, at the moment of scattering, all lines get one and same voltage +1
2
each.

This reflects the symmetry of the node and Huygens’ principle [34]. The summing (5)

has been discarded in [35][36] and ρ2 = (τ/3)2 along all lines considered to represent

Huygens’ principle.

In d dimensions, the reflection coefficient equals

1
2d−1

Z − Z
1

2d−1
Z + Z

= −d− 1

d
=

1

d
− 1 . (6)

The total voltage on the incoming line equals (1
d
−1)+1 = 1

d
. The transmitted pulses exhibit

a voltage of
1−

(
1
d
− 1

)
2d− 1

=
1

d
(7)

along each line. Again, the symmetry and the fulfillment of Huygens’ principle are obvious

[34].

The voltage impulses in that network are described by a set of difference equations of first

order in the propagation (time) step. Its fundamental solution is a discrete matrix Green’s

function which obeys a Chapman-Kolmogorov equation [37].

BTW, TLM networks are (idealized) physical realizations of correlated random walks

[38]. This makes their algorithms in numerical mathematics extremely stable.

III. THE EWALD-OSEEN EXTINCTION THEOREM IN TERMS OF PROPAGA-

TORS

Let a in formula (1) refer to a state (point) outside a medium (vacuum), c to one inside

the medium, and b to one on its surface. Then, formula (1) reads
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ac =

∑
b∈ surface

P
(vac)
ab P

(med)
bc . (8)

Now, if there would be no medium, we would have
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ac =
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P
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∑

b∈ surface

P
(vac)
ab P
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in the notations, let us begin with the Maxwell-Heaviside equations (SI units; cf. [39][40]).

∇× H⃗ − ˙⃗
D = j⃗free (11a)

∇× E⃗ +
˙⃗
B = 0 (11b)

∇ · D⃗ = ρfree (11c)

∇ · B⃗ = 0 (11d)

Here, ρfree and j⃗free are the free, unbound charges and (conduction, convection) current

densities, respectively. They obey the equation of continuity

∇ · j⃗free + ρ̇free = 0 . (12)

In an electrically neutral dielectric, both vanish identically,

j⃗free(r⃗, t) ≡ 0⃗, ρfree(r⃗, t) ≡ 0 (13)

B. Macroscopic theory

Within a macroscopic theory, one sets, for the dielectric under consideration,

H⃗ =
1

µ0

B⃗, D⃗ = ϵrϵ0E⃗. (14)

The Maxwell-Heaviside equations (11) become

1

µ0

∇× B⃗ − ϵrϵ0
˙⃗
E = 0⃗ (15a)

∇× E⃗ +
˙⃗
B = 0⃗ (15b)

ϵrϵ0∇ · E⃗ = 0 (15c)

∇ · B⃗ = 0 (15d)

As a consequence, one obtains wave equations for those field quantities with phase velocities

c0 in a vacuum and c = c0/n, n =
√
ϵr in a dielectric.

The amplitudes of the reflected and transmitted fields are determined by the continuities

and discontinuities of the electric and magnetic field quantities.

In the case of an incoming transverse plane wave moving perpendicularly to the surface

z = 0 of a dielectric in the half-space z ≥ 0, one has

E⃗(i)(r⃗, t) = E⃗0 e
i(k0z−ωt), B⃗(i)(r⃗, t) = B⃗0 e

i(k0z−ωt), B⃗0 = k⃗0 × E⃗0 . (16)
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in a dielectric.

The amplitudes of the reflected and transmitted fields are determined by the continuities and discontinuities of the electric and magnetic 
field quantities.

In the case of an incoming transverse plane wave moving perpendicularly to the surface z = 0 of a dielectric in the half-space z ≥ 0, one 
has

One obtains for the reflected and transmitted electric waves 

and analogously for B(r) and B(t). B(r) and B(t) will play no role in what follows because the dielectric under consideration is not magnetizable.

4.3 Polarization
The relative dielectric constant ϵr in eqs. (14) can also been represented by the polarization P and the polarizability χ as

Here, E is the (total) electric field strength inside the dielectric. Since the dielectric under consideration is optically homogeneous, 
isotropic, and linear, χ and the index of refraction 

One obtains for the reflected and transmitted electric waves

E⃗(r)(r⃗, t) =
1− n

1 + n
E⃗0 e

i(−k0z−ωt), E⃗(t)(r⃗, t) =
2

1 + n
E⃗0 e

i(kz−ωt) ;

n =
√
ϵr, k = nk0; E⃗(r)(⃗0, t) + E⃗(i)(⃗0, t) = E⃗(t)(⃗0, t) , (17)

and analogously for B⃗(r) and B⃗(t). B⃗(r) and B⃗(t) will play no role in what follows because

the dielectric under consideration is not magnetizable.

C. Polarization

The relative dielectric constant ϵr in eqs. (14) can also been represented by the polariza-

tion P⃗ and the polarizability χ as

D⃗ = ϵ0E⃗ + P⃗ , P⃗ = ϵ0χE⃗ . (18)

Here, E⃗ is the (total) electric field strength inside the dielectric. Since the dielectric under

consideration is optically homogeneous, isotropic, and linear, χ and the index of refraction

n =
√
1 + χ are constant, and the vectors P⃗ and E⃗ are parallel to the vector E⃗(i).

The microscopic theory to be considered next should be compatible with that macroscopic

picture. As a matter of fact, this has been more or less implicitly used in the representations

we are aware of, notably, in [25][26], as will be indicated below.

D. Microscopic theory

The polarization P⃗ (18) is related to the bound charge and current densities as

∇P⃗ = −ρbound,
˙⃗
P = j⃗bound; ∇ · j⃗bound + ρ̇bound = 0 . (19)

The Maxwell-Heaviside equations (11) become

1

µ0

∇× B⃗ − ϵ0
˙⃗
E = j⃗free + j⃗bound =: j⃗tot (20a)

∇× E⃗ +
˙⃗
B = 0 (20b)

ϵ0∇ · E⃗ = ρfree + ρbound =: ρtot (20c)

∇ · B⃗ = 0 (20d)

In our case, by virtue of the identities (13), we have ρtot = ρbound and j⃗tot = j⃗bound. Notice

that some authors [39][41] call j⃗free + ∂D⃗/∂t the total current (density).
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B. Macroscopic theory
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∇× E⃗ +
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As a consequence, one obtains wave equations for those field quantities with phase velocities

c0 in a vacuum and c = c0/n, n =
√
ϵr in a dielectric.

The amplitudes of the reflected and transmitted fields are determined by the continuities

and discontinuities of the electric and magnetic field quantities.

In the case of an incoming transverse plane wave moving perpendicularly to the surface

z = 0 of a dielectric in the half-space z ≥ 0, one has

E⃗(i)(r⃗, t) = E⃗0 e
i(k0z−ωt), B⃗(i)(r⃗, t) = B⃗0 e
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One obtains for the reflected and transmitted electric waves

E⃗(r)(r⃗, t) =
1− n

1 + n
E⃗0 e

i(−k0z−ωt), E⃗(t)(r⃗, t) =
2

1 + n
E⃗0 e

i(kz−ωt) ;

n =
√
ϵr, k = nk0; E⃗(r)(⃗0, t) + E⃗(i)(⃗0, t) = E⃗(t)(⃗0, t) , (17)

and analogously for B⃗(r) and B⃗(t). B⃗(r) and B⃗(t) will play no role in what follows because

the dielectric under consideration is not magnetizable.

C. Polarization

The relative dielectric constant ϵr in eqs. (14) can also been represented by the polariza-

tion P⃗ and the polarizability χ as

D⃗ = ϵ0E⃗ + P⃗ , P⃗ = ϵ0χE⃗ . (18)

Here, E⃗ is the (total) electric field strength inside the dielectric. Since the dielectric under

consideration is optically homogeneous, isotropic, and linear, χ and the index of refraction

n =
√
1 + χ are constant, and the vectors P⃗ and E⃗ are parallel to the vector E⃗(i).

The microscopic theory to be considered next should be compatible with that macroscopic

picture. As a matter of fact, this has been more or less implicitly used in the representations

we are aware of, notably, in [25][26], as will be indicated below.

D. Microscopic theory

The polarization P⃗ (18) is related to the bound charge and current densities as

∇P⃗ = −ρbound,
˙⃗
P = j⃗bound; ∇ · j⃗bound + ρ̇bound = 0 . (19)

The Maxwell-Heaviside equations (11) become

1

µ0

∇× B⃗ − ϵ0
˙⃗
E = j⃗free + j⃗bound =: j⃗tot (20a)

∇× E⃗ +
˙⃗
B = 0 (20b)

ϵ0∇ · E⃗ = ρfree + ρbound =: ρtot (20c)

∇ · B⃗ = 0 (20d)

In our case, by virtue of the identities (13), we have ρtot = ρbound and j⃗tot = j⃗bound. Notice

that some authors [39][41] call j⃗free + ∂D⃗/∂t the total current (density).
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The Maxwell-Heaviside equations (11) become 

In our case, by virtue of the identities (13), we have ρtot = ρbound and jtot = jbound. Notice that some authors call jfree + ∂D/∂t the total current 
(density) [41].

4.5 Hertz’s Potential
To calculate the radiation field of a point-like linear dipole in a vacuum oscillating along the z-axis, Heinrich Hertz has invented the 
following ingenious calculation [42]. Outside the dipole, the Maxwell-Heaviside equations (20) read (Hertz’s equation numbers)

Due to the cylindrical symmetry of the dipole and the linearity of the Maxwell equations, the fields E, B are cylindrical symmetric, too. 
(For the general case, see, e.g. [43]). By virtue of its rotational nature, B circulates parallel to the x, y-plane around the z-axis, while E is 
perpendicular to it. In cylindrical coordinates 

E. Hertz’s potential

To calculate the radiation field of a point-like linear dipole in a vacuum oscillating along

the z-axis, Heinrich Hertz [42] has invented the following ingenious calculation. Outside the

dipole, the Maxwell-Heaviside equations (20) read (Hertz’s equation numbers)

(1)
∂B⃗

∂t
= −∇× E⃗, (2)

1

c20

∂E⃗

∂t
= ∇× B⃗.

(3) ∇ · B⃗ = 0, ∇ · E⃗ = 0.

Due to the cylindrical symmetry of the dipole and the linearity of the Maxwell equations,

the fields E⃗, B⃗ are cylindrical symmetric, too. (For the general case, see, e.g. [43]). By virtue

of its rotational nature, B⃗ circulates parallel to the x, y-plane around the z-axis, while E⃗ is

perpendicular to it. In cylindrical coordinates (ρ =
√
x2 + y2), this means (our Eρ is Hertz’s

R, our Bϕ – his P )

E⃗ = E⃗(ρ, z, t) = (Eρ, Eϕ ≡ 0, Ez), Eρ =
x

ρ
Ex +

y

ρ
Ey; (21a)

B⃗ = B⃗(ρ, z, t) = (Bρ ≡ 0, Bϕ, Bz ≡ 0), Bϕ =
y

ρ
Bx −

x

ρ
By. (21b)

There are only three non-vanishing field components. They are subject to the two constraints

(3). For this, there is only one independent field variable, e.g. the Hertz potential Π. As a

consequence, “a possible solution” ([Hertz 2001] p. 150) of eqs. (1). . . (3) is

Ex = − ∂2Π

∂x ∂z
= − ∂2Π

∂ρ ∂z

x

ρ
, Ey = − ∂2Π

∂y ∂z
= − ∂2Π

∂ρ ∂z

y

ρ
, Eρ = − ∂2Π

∂ρ ∂z
,

Ez =
∂2Π

∂x2
+

∂2Π

∂y2
=

1

ρ

∂

∂ρ

(
ρ
∂Π

∂ρ

)
=

1

c20

∂2Π

∂t2
− ∂2Π

∂z2
, (22a)

Bx =
1

c20

∂2Π

∂y∂t
=

1

c20

∂2Π

∂ρ ∂t

y

ρ
, By = − 1

c20

∂2Π

∂x∂t
= − 1

c20

∂2Π

∂ρ ∂t

x

ρ
, Bϕ = − 1

c20

∂2Π

∂ρ∂t
, (22b)

where the Hertz potential Π obeys the homogeneous wave equation,

1

c20

∂2Π

∂t2
= ∆Π. (23)

The symmetry of the electromagnetic field is obvious; in particular, Π is independent of ϕ.

The vector and scalar potentials equal A⃗ = (0, 0,−∂Π/∂t) and Φ = ∂Π/∂z, respectively.

For this, the Hertz potential is also called a ‘super-potential’.
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consideration is optically homogeneous, isotropic, and linear, χ and the index of refraction

n =
√
1 + χ are constant, and the vectors P⃗ and E⃗ are parallel to the vector E⃗(i).

The microscopic theory to be considered next should be compatible with that macroscopic

picture. As a matter of fact, this has been more or less implicitly used in the representations

we are aware of, notably, in [25][26], as will be indicated below.

D. Microscopic theory

The polarization P⃗ (18) is related to the bound charge and current densities as
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E. Hertz’s potential

To calculate the radiation field of a point-like linear dipole in a vacuum oscillating along

the z-axis, Heinrich Hertz [42] has invented the following ingenious calculation. Outside the

dipole, the Maxwell-Heaviside equations (20) read (Hertz’s equation numbers)

(1)
∂B⃗

∂t
= −∇× E⃗, (2)

1

c20

∂E⃗

∂t
= ∇× B⃗.

(3) ∇ · B⃗ = 0, ∇ · E⃗ = 0.

Due to the cylindrical symmetry of the dipole and the linearity of the Maxwell equations,

the fields E⃗, B⃗ are cylindrical symmetric, too. (For the general case, see, e.g. [43]). By virtue

of its rotational nature, B⃗ circulates parallel to the x, y-plane around the z-axis, while E⃗ is

perpendicular to it. In cylindrical coordinates (ρ =
√
x2 + y2), this means (our Eρ is Hertz’s

R, our Bϕ – his P )

E⃗ = E⃗(ρ, z, t) = (Eρ, Eϕ ≡ 0, Ez), Eρ =
x

ρ
Ex +

y

ρ
Ey; (21a)

B⃗ = B⃗(ρ, z, t) = (Bρ ≡ 0, Bϕ, Bz ≡ 0), Bϕ =
y

ρ
Bx −

x

ρ
By. (21b)

There are only three non-vanishing field components. They are subject to the two constraints

(3). For this, there is only one independent field variable, e.g. the Hertz potential Π. As a

consequence, “a possible solution” ([Hertz 2001] p. 150) of eqs. (1). . . (3) is

Ex = − ∂2Π

∂x ∂z
= − ∂2Π

∂ρ ∂z

x

ρ
, Ey = − ∂2Π

∂y ∂z
= − ∂2Π

∂ρ ∂z

y

ρ
, Eρ = − ∂2Π

∂ρ ∂z
,

Ez =
∂2Π

∂x2
+

∂2Π

∂y2
=

1

ρ

∂

∂ρ

(
ρ
∂Π

∂ρ

)
=

1

c20

∂2Π

∂t2
− ∂2Π

∂z2
, (22a)

Bx =
1

c20

∂2Π

∂y∂t
=

1

c20

∂2Π

∂ρ ∂t

y

ρ
, By = − 1

c20

∂2Π

∂x∂t
= − 1

c20

∂2Π

∂ρ ∂t

x

ρ
, Bϕ = − 1

c20

∂2Π

∂ρ∂t
, (22b)

where the Hertz potential Π obeys the homogeneous wave equation,

1

c20

∂2Π

∂t2
= ∆Π. (23)

The symmetry of the electromagnetic field is obvious; in particular, Π is independent of ϕ.

The vector and scalar potentials equal A⃗ = (0, 0,−∂Π/∂t) and Φ = ∂Π/∂z, respectively.

For this, the Hertz potential is also called a ‘super-potential’.
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(3). For this, there is only one independent field variable, e.g. the Hertz potential Π. As a
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1

c20

∂2Π

∂t2
= ∆Π. (23)

The symmetry of the electromagnetic field is obvious; in particular, Π is independent of ϕ.

The vector and scalar potentials equal A⃗ = (0, 0,−∂Π/∂t) and Φ = ∂Π/∂z, respectively.

For this, the Hertz potential is also called a ‘super-potential’.
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The homogeneous Maxwell-Heaviside equations (20b), (20d) are identically fulfilled through introducing the vector A and scalar 
potentials Φ, respectively, as 

For exploiting the electric Hertz vector, it is necessary to impose the Lorenz gauge,

It leads to the wave equations 

Analogously to the relations (19) between the polarization and the bound charge and current densities, the Lorenz gauge (25) can be 
automatically fulfilled by means of the electric Hertz vector πe, 

Inserting these expressions into the wave equations (26) yields 

Both equations are compatible, iff f (r) = g (t) = const.. This constant must be equal zero for the advanced and retarded solutions to them 
to converge. Therefore, the electric Hertz vector obeys the wave equation 

Remark 3 That wave equation means that
1. The phase speed of the electric Hertz vector πe equals c0 both in the vacuum and the dielectric;
2. πe is calculated using a seemingly vacuum equation; due to the polarization, however, it contains both vacuum and medium terms. 
see below.
 
Moreover, 

Hypothesis 1 The Hertz potential Π and its generalizations to the electric Hertz vector πe in polarizable media and the magnetic Hertz 
vector πm in magnetizable media represent a complete set of independent dynamical variables.

If that hypothesis holds true, it provides a reason for the fact that they have proven useful for solving many radiation problems (for a 
throughout analysis, see [44-46], for references of pedagogical purpose [47]). In contrast to the cumbersome traditional calculations 
(e.g., Section 2.4), the electric Hertz vector allows for a relatively direct treatment of the extinction theorem in non-magnetically, 
electrically neutral dielectrics (e.g. as will be discussed in what follows.

5. The Ewald-Oseen Extinction Theorem for a Dielectric Half- Space
5.1  Experimental Setup
Zangwill (Section 20.9) considers a dielectric as above which occupies the half-space z ≥ 0 (see his Figure 20.23 on p. 763). There is an 
incident plane wave of electric field strength E (i) moving perpendicularly to the surface z = 0 of the dielectric,

F. The electric Hertz vector

The boundary conditions used in eqs. (17) are not needed when looking for a solution in

whole space. Such a solution can be obtained using the electric Hertz vector.

The homogeneous Maxwell-Heaviside equations (20b), (20d) are identically fulfilled

through introducing the vector A⃗ and scalar potentials Φ, respectively, as

B⃗ = ∇× A⃗, E⃗ = − ˙⃗
A−∇Φ . (24)

For exploiting the electric Hertz vector, it is necessary to impose the Lorenz gauge,

∇ · A⃗+
1

c20
Φ̇ = 0 . (25)

It leads to the wave equations

1

c20

¨⃗
A−∇2A⃗ = µ0 j⃗bound = µ0

˙⃗
P , (26a)

1

c20
Φ̈−∇2Φ =

1

ϵ0
ρbound = − 1

ϵ0
∇ · P⃗ . (26b)

Analogously to the relations (19) between the polarization and the bound charge and

current densities, the Lorenz gauge (25) can be automatically fulfilled by means of the

electric Hertz vector π⃗e,

A⃗ =
1

c20
˙⃗πe , Φ = −∇ · π⃗e (27)

Inserting these expressions into the wave equations (26) yields
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c20

∂

∂t

(
1

c20
¨⃗πe −∇2π⃗e

)
= µ0

∂

∂t
P⃗ ,

1

c20
¨⃗πe −∇2 π⃗e =
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ϵ0
P⃗ + f⃗(r⃗) ; (28a)

−∇ ·
(
1

c20
Φ̈−∇2Φ

)
= − 1

ϵ0
∇ · P⃗ ,
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c20
¨⃗πe −∇2 π⃗e =

1
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P⃗ + g⃗(t). (28b)

Both equations are compatible, iff f⃗(r⃗) = g⃗(t) = const.. This constant must be equal zero

for the advanced and retarded solutions to them to converge. Therefore, the electric Hertz

vector obeys the wave equation
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c20
¨⃗πe −∇2 π⃗e =

1

ϵ0
P⃗ . (29)

Remark 3 That wave equation means that

1. The phase speed of the electric Hertz vector π⃗e equals c0 both in the vacuum and the

dielectric;
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2. π⃗e is calculated using a seemingly vacuum equation; due to the polarization, however,

it contains both vacuum and medium terms. see below.

Moreover,

E⃗ = − 1

c20
¨⃗πe +∇ (∇ · π⃗e) = ∇×∇× π⃗e −

P⃗

ϵ0
. (30)

Hypothesis 1 The Hertz potential Π and its generalizations to the electric Hertz vector π⃗e

in polarizable media and the magnetic Hertz vector π⃗m in magnetizable media represent a

complete set of independent dynamical variables.

If that hypothesis holds true, it provides a reason for the fact that they have proven useful

for solving many radiation problems (for a throughout analysis, see [45][46], for references

of pedagogical purpose [47]). In contrast to the cumbersome traditional calculations (e.g.,

[25] Section 2.4), the electric Hertz vector allows for a relatively direct treatment of the

extinction theorem in non-magnetically, electrically neutral dielectrics (e.g. [13][14][26]) as

will be discussed in what follows.

V. THE EWALD-OSEEN EXTINCTION THEOREM FOR A DIELECTRIC HALF-

SPACE

A. Experimental setup

Zangwill ([26] Section 20.9) considers a dielectric as above which occupies the half-space

z ≥ 0 (see his Figure 20.23 on p. 763). There is an incident plane wave of electric field

strength E⃗(i) moving perpendicularly to the surface z = 0 of the dielectric,

E⃗(i)(r⃗, t) = E⃗0 e
i(k0z−ωt) . (31)

The vector E⃗0 lies parallel to the x, y-plane.

Remark 4 As noticed before, this ansatz supposes the incident wave to penetrate without

perturbation into the dielectric. Then, which field is exciting the polarization in it?

As mentioned at the beginning of Subsection IVF, matching conditions play no role, if

one seeks a solution that is valid for the whole space R3 ([26] p. 763, after formula (20.244)).

This is surely a benefit of such an approach. For the setup under consideration, they play

no role anyway, because, (i), the electric field is transverse and, (ii), the medium is not

magnetizable.
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The vector E0 lies parallel to the x, y-plane.

Remark 4 As noticed before, this ansatz supposes the incident wave to penetrate without perturbation into the dielectric. Then, which 
field is exciting the polarization in it?

As mentioned at the beginning of Subsection IV F, matching conditions play no role, if one seeks a solution that is valid for the whole 
space ℝ3 p. 763, after formula (20.244). This is surely a benefit of such an approach. For the setup under consideration, they play no role 
anyway, because, (i), the electric field is transverse and, (ii), the medium is not magnetizable.
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Accordingly, the electric Hertz vector can be split as
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with, using formulas (30) and (31),
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c20

∂2π⃗0

∂t2
−∇2π⃗0 = 0 , E⃗(i) = − 1

c20
¨⃗π0 +∇ (∇ · π⃗0) (34a)

1

c20

∂2π⃗p

∂t2
−∇2π⃗p =

1

ϵ0
P⃗ , E⃗p = − 1

c20
¨⃗πp +∇ (∇ · π⃗p) . (34b)

π⃗0 is not of interest here except that it represents the solution to the homogeneous part of

eq. (29) which is given by the incident electric field (31). Due to that, it is sufficient to seek

just one particular solution π⃗p to eq. (34b). Zangwill [26] chooses the retarded integral

π⃗p(r⃗, t) =
1

4πε0

∫∫∫
P⃗ (r⃗′, t− |r⃗ − r⃗′|/c0)

|r⃗ − r⃗′|
dx′dy′dz′. (35)

“The physical solution of interest” ([26] after formula (20.247), [48]) contains a polariza-

tion of the form (k = nk0)

P⃗ (r⃗′, t) = P⃗0 e
i(kz−ωt) . (36)

As a matter of fact, this expression is imposed without further reasoning; actually, it follows

from the macroscopic theory, see formulas (16) f. Thus, Born & Wolf’s [25] and Zangwill’s

[26] treatments are not purely microscopically.

Inserting the r.h.s. of the ansatz (36) into the integral (35) yields (ω/c0 = k0)

π⃗p(r⃗, t) =
P⃗ e−iωt

4πϵ0
eikz

∞∫

0

eik(z
′−z)

+∞∫

−∞

+∞∫

−∞

eik0|r⃗−r⃗′|

|r⃗ − r⃗′|
dx′dy′dz′. (37)

The advantage of putting the factor eikz before and the factor e−ikz inside the integral will

become visible in formulas (39) ff. below.
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The integrals over x′, y′ equal (for a detailed calculation, see [13] (17), [49])

2πi

k0
eik0|z

′−z| . (38)

Therefore,

π⃗p(r⃗, t) =
P⃗ e−iωt

2ϵ0k0
I, I := i eikz

∞

0

eik(z
′−z) eik0|z

′−z| dz′. (39)

As to be expected for symmetry reasons, π⃗p is independent of x, y.

The integral I must be separately calculated for z < 0 (Case 1 below) and z > 0 (Case 2

below) due to the absolute value |z′ − z| in the integrand. Indeed,

eik(z
′−z) eik0|z

′−z| =



eik(z

′−z) e−ik0(z′−z) = ei(k−k0)(z′−z) z′ ≤ z ,

eik(z
′−z) eik0(z

′−z) = ei(k+k0)(z′−z) z′ ≥ z .
(40)

Case 1. z < 0 (vacuum): For all {z′ | 0 ≤ z′ < ∞}, we have z′ > z. The integral I in

formula (39) thus equals

I = Iz<0 := i eikz
∞

0

ei(k+k0)(z′−z) dz′ = − e−ik0z

k + k0
. (41)

Case 2. z ≥ 0 (dielectric): The integration interval 0 ≤ z′ < ∞ in formula (39) must be

split into the intervals 0 ≤ z′ ≤ z and z ≤ z′ < ∞,

I = Iz≥0 := i eikz
z

0

ei(k−k0)(z′−z) dz′ + eikz
∞

z

ei(k+k0)(z′−z) dz′

=
eikz − eik0z

k − k0
− eikz

k + k0
= − eik0z

k − k0
+

2k0e
ikz

k2 − k2
0

. (42)

Inserting those results into formula (39) gives

π⃗p(r⃗, t) = − P⃗0 e
−ωt

2ϵ0k0




1
k+k0

e−ik0z z < 0 ,

1
k−k0

eik0z + 2k0
k20−k2

eikz z ≥ 0 .
(43)

C. Ewald-Oseen extinction theorem

We are now in the position to calculate E⃗p according to formula (34b). Since π⃗p ∥ P⃗ and

π⃗p – as P⃗ does – depends only on z, we have ∇· π⃗p = ∇· P⃗ = 0. Due to that and ω2/c20 = k2
0,

E⃗p = − 1

c20
¨⃗πp = k2

0π⃗p , E⃗ = E⃗0 e
i(k0z−ωt) + k2

0π⃗p . (44)
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As to be expected for symmetry reasons, π p is independent of x, y.

The integral I must be separately calculated for z < 0 (Case 1 below) and z > 0 (Case 2 below) due to the absolute value |z′ − z| in the 
integrand. Indeed,

Case 1. z < 0 (vacuum): For all {z′ | 0 ≤ z′ < ∞}, we have z′ > z. The integral I in formula (39) thus equals 

Case 2. z ≥ 0 (dielectric): The integration interval 0 ≤ z′ < ∞ in formula (39) must be split into the intervals 0 ≤ z′ ≤ z and z ≤ z′ < ∞, 

Inserting those results into formula (39) gives 

5.3 Ewald Oseen Extinction Theorem 

Again, we have to discriminate between the two cases z < 0 and z ≥ 0.

Case 1. z < 0 (vacuum): Substituting formula (43) for z < 0 into formula (44) gives 

The first term describes the incident wave, the second one the reflected wave. According to formulas (17), (44), and k = nk0, we have 

Case 2. z ≥ 0 (dielectric): Doing the same for z ≥ 0 gives, using the second formula (46),
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14Again, we have to discriminate between the two cases z < 0 and z ≥ 0.

Case 1. z < 0 (vacuum): Substituting formula (43) for z < 0 into formula (44) gives

E⃗(z < 0, t) = E⃗0 e
i(k0z−ωt) − P⃗

2ϵ0

k0
k0 + k

ei(−k0z−ωt) . (45)

The first term describes the incident wave, the second one the reflected wave. According to

formulas (17), (44), and k = nk0, we have

E⃗(r) =
1− n

1 + n
E⃗0 = − P⃗0

2ϵ0

k0
k0 + k

= − P⃗0

2ϵ0

1

1 + n
, P⃗0 = 2ϵ0(n− 1)E⃗0. (46)

Case 2. z ≥ 0 (dielectric): Doing the same for z ≥ 0 gives, using the second formula

(46),

E⃗(z ≥ 0, t) = E⃗0 e
i(k0z−ωt) − P⃗

2ϵ0

k0
k − k0

ei(k0z−ωt) − P⃗

ϵ0

k2
0

k2
0 − k2

ei(kz−ωt)

= E⃗0 e
i(k0z−ωt) − E⃗0 e

i(k0z−ωt) − 2(n− 1)E⃗0
1

1− n2
ei(kz−ωt)

=
2

1 + n
E⃗0 e

i(kz−ωt) . (47)

The second line displays the extinction of the incident wave, while the last line describes the

observed transmitted wave E⃗(t) (17) in the dielectric.

Our early recursion to the macroscopic theory in formulas (46) saves the calculations in

[26] (20.255) ff.

Obviously, that exposition is formally, mathematically correct. However, it contradicts

Huygens’ principle, see Remark 4.

VI. SUMMARY AND CONCLUSIONS

In our understanding, Huygens’ construction involves that

1. the incident wave is completely extinguished by having excited the sources of the sec-

ondary wavelets;

2. each of these sources irradiates one secondary wavelet according to its local propaga-

tion conditions (in case of double refraction, two secondary wavelets are irradiated).

On the contrary, the Ewald-Oseen extinction theorem describes refraction this way:
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The second line displays the extinction of the incident wave, while the last line describes the observed transmitted wave E (t) (17) in the 
dielectric.

Our early recursion to the macroscopic theory in formulas (46) saves the calculations in (20.255) ff.

Obviously, that exposition is formally, mathematically correct. However, it contradicts Huygens’ principle, see Remark 4.

6. Summary and Conclusions
In our understanding, Huygens’ construction involves that the incident wave is completely extinguished by having excited the sources of 
the secondary wavelets; each of these sources irradiates one secondary wavelet according to its local propagation conditions (in case of 
double refraction, two secondary wavelets are irradiated).

On the contrary, the Ewald Oseen extinction theorem describes refraction this way: The incident wave moves through the refracting 
medium without any alteration;

There is a polarization and/or a magnetization of the medium creating three or four waves:

(a) the reflected wave,
(b) one wave which extinguishes the incoming wave,
(c) one wave which corresponds to the observed one (in case of double refraction two waves).

Here, the question arises, how the medium is excited when the incident wave moves through it without alteration, i.e. without interacting 
with the medium? Hence, as the excitation of a medium has not any cause, the theorem is both physically and philosophically doubtful. 
Therefore, it resembles Vaihinger’s philosophy of ‘as if’ [50]. It can be useful to act “as if” it were physically (and philosophically) 
correct.

As an example, we have shown in Section III that an abstract propagator description is mathematically compatible with both points of 
view. This corroborates Feynman’s interpretation of Huygens’ principle in terms of the Chapman-Kolmogorov equation (2). However, 
both descriptions are mathematically but not physically equivalent.

Notice that all those treatments discard the interaction principle in that the incident wave acts upon the secondary sources, while there is 
no back-reaction from the secondary sources upon the incident wave (cf. end-note 9).

For the sake of completeness, let us remark this. The Ewald Oseen extinction theorem imagines that each secondary source in Huygens’ 
principle re-irradiates more than one secondary wavelet. This resembles the standard interpretation of the surface integral terms in 
Kirchhoff’s integral theorem in that it “involves two types of sources of varying strength.” [51,52]. For a criticism of that interpretation 
as well as considering Kirchhoff’s theorem as a representation of Huygens’ principle, see.
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