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Abstract
Large Language Models (LLMs) encode semantic relationships in high-dimensional vector embeddings. This paper 
explores the analogy between LLM embedding spaces and quantum mechanics, positing that LLMs operate within 
a quantized semantic space where words and phrases behave as quantum states. To capture nuanced semantic 
interference effects, we extend the standard realvalued embedding space to the complex domain, drawing parallels to 
the double-slit experiment. We introduce a ”semantic wave function” to formalize this quantum-derived representation 
and utilize potential landscapes, such as the double-well potential, to model semantic ambiguity. Furthermore, we 
propose a complex-valued similarity measure that incorporates both magnitude and phase information, enabling a 
more sensitive comparison of semantic representations. We develop a path integral formalism, based on a nonlinear 
Schro¨dinger equation with a gauge field and Mexican hat potential, to model the dynamic evolution of LLM behavior. 
This interdisciplinary approach offers a new theoretical framework for understanding and potentially manipulating 
LLMs, with the goal of advancing both artificial and natural language understanding.

1. Introduction
Large Language Models (LLMs) have emerged as transformative 
tools in natural language processing, demonstrating remarkable 
capabilities in tasks ranging from text generation and translation 
to question answering and code completion. At the heart of these 
models lies a sophisticated mechanism for representing text: high-
dimensional vector embeddings. These embeddings map words, 
phrases, and even entire documents into a continuous semantic 
space, where geometric relationships reflect semantic similarities. 
For instance, words with related meanings are positioned closer 
together, while dissimilar concepts are further apart.

While these embedding spaces are often treated as continuous 
for practical purposes, a fundamental aspect of LLMs hints at 
an underlying discreteness: their reliance on a finite vocabulary 
of tokens. This discrete foundation suggests that the seemingly 
continuous semantic space might, in fact, possess a quantized 
structure, analogous to the discrete energy levels observed in 
quantum systems. This inherent quantization prompts a compelling 
question: can we leverage the powerful theoretical frameworks of 
mathematical physics and tools of quantum mechanics to gain a 

deeper understanding of the organization and dynamics of these 
semantic spaces? Furthermore, if this quantization is valid, could 
quantum computing, for example, offer new approaches to training 
or exploiting these models, potentially unlocking significant 
performance gains?

This article embarks on an exploration of this intriguing analogy 
between LLM embedding spaces and quantum mechanics. We 
focus on the concept of quantization, the wave-like behavior of 
semantic representations, and the potential for quantum-like 
models to illuminate the inner workings of LLMs. Our central 
proposition is that the LLM embedding space can be viewed as 
a quantized semantic space, where individual words and phrases 
correspond to distinct quantum states. This perspective allows us 
to draw parallels between the probabilistic outputs of LLMs and 
the inherent uncertainties characteristic of quantum systems.

A key element of our approach is the extension of the standard, 
real-valued embedding space to the complex domain. This 
complexification enables us to model semantic interference 
effects, drawing direct parallels to phenomena such as the double-
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slit experiment in quantum mechanics. We demonstrate how this 
complex representation, combined with concepts like potential 
landscapes (e.g., the double-well potential for modeling semantic 
ambiguity) and path integral formalisms, can provide new insights 
into the behavior of LLMs, including their ability to generate 
creative text and handle nuanced semantic relationships.

By embracing this interdisciplinary approach, we aim to establish 
a theoretical foundation for understanding LLM behavior through 
the lens of quantum mechanics. We propose that LLM embedding 
spaces exhibit emergent properties analogous to quantum systems, 
potentially leading to new views in natural language understanding 
and generation.

2. Background and Related Work
LLMs have revolutionized Natural Language Processing (NLP), 
achieving state-of-the-art results in various tasks such as text 
generation, translation, and question answering. These models are 
typically based on the Transformer architecture, which utilizes 
self-attention mechanisms to capture long-range dependencies in 
text [1]. A key distinction of the Transformer architecture is its 
departure from previous recurrent neural network approaches. 
Instead of recurrence, the Transformer relies entirely on attention 
mechanisms, enabling parallel processing of the input sequence 
and significantly improved training efficiency. The Transformer 
architecture has enabled LLMs to scale to unprecedented sizes, with 
models like BERT and GPT-3 containing billions of parameters 
[2, 3]. The self-attention mechanism is a core innovation of the 
Transformer. It allows the model to weigh the importance of 
different words in the input sequence when processing each word, 
effectively capturing contextual relationships. This is achieved by 
computing attention weights based on the relationships between 
”queries”, ”keys”, and ”values” derived from the input embeddings. 
The attention weights determine the contribution of each word to 
the representation of other words, allowing the model to focus 
on the most relevant parts of the input when making predictions. 
Furthermore, multi-head attention enhances this capability by 
allowing the model to attend to different aspects of the input in 
parallel, capturing a richer set of relationships.

A key component of LLMs is the embedding space, where 
words and phrases are represented as high-dimensional vectors. 
These embeddings are learned during the training process and 
capture semantic relationships between words. Words with 
similar meanings are located closer together in the embedding 
space, while dissimilar words are further apart. Understanding 
the structure and properties of these embedding spaces is crucial 
for interpreting the behavior of LLMs. The geometry of these 
embedding spaces has been explored by researchers like Mimno 
and Thompson [4]. Furthermore, the way context influences these 
embeddings has been investigated by Tenney et al. [5]. Several 
approaches have been proposed for analyzing LLM embedding 
spaces. Dimensionality reduction techniques, such as Principal 
Component Analysis (PCA) and t-distributed Stochastic Neighbor 
Embedding (t-SNE), are often used to visualize the embedding 
space in lower dimensions [6, 7]. Geometric analysis techniques, 

such as calculating cosine similarity between vectors, are used 
to quantify the semantic similarity between words and phrases 
[8]. These approaches have provided valuable insights into the 
organization of semantic information in LLMs. Mitchell and Lapata  
have developed methods for evaluating the compositionality 
of these models, while Arora et al [9]. have explored the linear 
algebraic structure of word senses [10].

The connection between information theory and physics has 
been explored in various contexts. Shannon’s information theory 
provides a framework for quantifying the amount of information 
contained in a message [11]. Landauer’s principle establishes 
a fundamental link between information and thermodynamics, 
stating that erasing one bit of information requires a minimum 
amount of energy dissipation [12]. These concepts have been 
applied to the study of computation, complexity, and the limits of 
information processing. The application of field theory to classical 
complex phenomena has also been successful. For example, field 
theory has been used to model turbulence, providing a theoretical 
framework for understanding the statistical properties of turbulent 
flows [13]. Furthermore, field-theoretic approaches are valuable 
in describing phase transitions in classical statistical mechanics 
and the emergent behavior of active matter systems [14]. These 
applications demonstrate the power of field theory to describe 
emergent phenomena in complex systems.

Our work builds upon these existing approaches by exploring the 
analogy between LLM embedding spaces and quantum mechanics. 
Quantum mechanics, pioneered by Heisenberg, Schr¨odinger, 
and Dirac, provides a powerful framework for understanding the 
behavior of matter at the atomic and subatomic level [15-18]. 
Dirac’s work on quantum electrodynamics laid the foundation for 
quantum field theory, further developed by Schwinger [19-24]. The 
concept of symmetry, crucial in physics, was formalized by Wigner 
and plays a key role in understanding particle physics, including 
the Higgs mechanism [25–29]. We propose a new approach based 
on quantum principles that leverages the theoretical frameworks 
of quantum mechanics to gain a deeper understanding of the 
organization and dynamics of semantic spaces. This approach is 
inspired by the observation that LLMs rely on a finite vocabulary 
of tokens, suggesting an underlying discreteness in the seemingly 
continuous semantic space. We extend the standard, real-valued 
embedding space to the complex domain to model semantic 
interference effects, drawing parallels to phenomena such as the 
double-slit experiment in quantum mechanics. Furthermore, we 
introduce a new, complex-valued similarity measure that captures 
both magnitude and phase information, offering a more nuanced 
comparison of semantic representations. We present a path integral 
formalism, based on a nonlinear Schr¨odinger equation with a 
gauge field and Mexican hat potential, for modeling the dynamics 
of LLM behavior. This builds on previous work exploring quantum-
like models in cognition and semantic composition [30-33].

By applying quantum mechanical concepts to the analysis of LLM 
embedding spaces, our approach aims to provide a fresh perspective 
on these complex systems. Building on previous work that has 
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explored connections between information theory, physics, and 
natural language processing, this quantum-like framework has the 
potential to unlock new understandings of the emergent properties 
of LLMs and to inspire future research.

3. Probabilistic LLM Behavior: The Coin Flipping Analogy
To begin exploring the analogy between LLMs and quantum 
mechanics, we first acknowledge the inherent probabilistic 
nature of LLM outputs. While often perceived as deterministic 
systems trained to mimic human language, LLMs exhibit a 
degree of randomness, particularly evident in text generation. 
This stochasticity arises from the sampling process used to select 
the next token in a sequence, where probabilities are assigned 
to different tokens based on the model’s learned distribution. 
To illustrate this probabilistic behavior and introduce relevant 
quantum mechanical concepts, we employ a simple coin-flipping 
analogy. In the following example, and also in other examples 
in this article, we use the OpenAI embedding model and gpt-4o. 
Consider the following prompt presented to an LLM: ”””You are a 
game machine. Choose a number between 0 and 1. If the number 
is less than 0.5, enter ”heads”. Otherwise, write ”tails”. Just 
answer ”heads” or ”tails”.””” When presented with this prompt 
in a conversational setting (where the history is preserved), the 
LLM generates a sequence of responses that, over many iterations, 
approximates a fair coin flip. We observe roughly 50% of the 
answers being ”heads” and 50% being ”tails.” This empirical 
observation suggests an underlying probabilistic mechanism 
governing the LLM’s output, rather than a purely deterministic 
process. In quantum mechanics, a two-level system provides a 
fundamental model for describing systems with two distinct and 
discrete states. Unlike classical systems, a quantum two-level 
system can exist in a superposition, a linear combination of both 
states. Familiar examples include the spin of a spin-1/2 particle 
(spin up or spin down) or the polarization of a photon (horizontal 
or vertical). The state of a general two-level system can be 
represented as a vector in a two-dimensional Hilbert space,

	

where |1⟩ and |2⟩ represent the two orthonormal basis states, and 
c1 and c2 are complex probability amplitudes. The probability 
of measuring the system in state |1⟩ is given by |c1|

2, and the 
probability of measuring the system in state |2⟩ is given by |c2|

2. 
These probabilities must sum to one, reflecting the certainty that 
the system is in one of the two possible states upon measurement,

We can draw a conceptual analogy between the LLM coin-flipping 
example and a quantum two-level system. Let |heads⟩ and |tails⟩ 
represent the two possible states of the LLM’s response, analogous 
to the spin-up and spin-down states of a spin-1/2 particle. The 
prompt can be viewed as an ”interaction” or ”measurement” that 
forces the LLM to ”choose” between these two states. Prior to the 

prompt, the LLM can be considered to be in a superposition of 
these two states,

	

In this analogy, c1 and c2 represent the probability amplitudes 
for the LLM to respond with ”heads” or ”tails”, respectively. The 
observed frequencies of ”heads” and ”tails” in the LLM’s output 
can then be interpreted as the probabilities of measuring the system 
in each state,

While this analogy provides a useful and intuitive starting point 
for understanding the probabilistic nature of LLMs, it is crucial 
to recognize its inherent limitations. In the quantum mechanical 
example, |heads⟩ and |tails⟩ represent distinct and orthogonal 
quantum states, not simply vectors in a real-valued embedding 
space. Furthermore, the dynamics of a quantum system are governed 
by the Schr¨odinger equation, which describes the evolution 
of the wave function and the superposition of states. The act of 
measurement in quantum mechanics also leads to the collapse of the 
wave function into a single, definite state. These concepts are not 
directly mirrored in the standard LLM architecture. Furthermore, 
the standard LLM embedding space does not inherently support 
complex probability amplitudes, which are essential for describing 
quantum interference effects. These limitations motivate the need 
for a more sophisticated model that can capture the wave-like 
behavior of semantic representations and incorporate complex 
phases, as we will explore in the following sections.

4. Core Quantum Mechanical Analogies
It is crucial to first clarify the role of nonlinearity in the context of 
LLM embedding spaces. We distinguish between two key stages: 
(1) the LLM’s training process and prediction calculation, which 
are inherently nonlinear due to the use of neural networks with 
nonlinear activation functions, and (2) the subsequent analysis 
of the learned embeddings, such as calculating cosine similarity 
between vectors. While the latter is a linear operation, it operates 
on vectors resulting from a nonlinear process, thus inheriting 
the effects of that nonlinearity. Based on this distinction, we will 
explore two complementary approaches in this article: one that 
leverages the linearity of the embedding space when comparing 
results (embedding vectors, states) and another that explicitly 
incorporates nonlinearity during result calculation to capture more 
nuanced semantic phenomena.
To draw parallels with quantum mechanics, we adopt the following 
key assumptions:
1.	 Completeness of Vocabulary: We assume that the LLM’s 

finite vocabulary forms a (approximately) complete basis for 
representing semantic information. While this is not strictly 
true, we treat it as a reasonable approximation for the purposes 
of our analogy.

2.	 Semantic Space: Drawing an analogy to quantum mechanical 
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respectively. The observed frequencies of ”heads” and ”tails” in the LLM’s output can then be interpreted as the
probabilities of measuring the system in each state,

|⟨heads | prompt⟩|2 ≈ 0.5 (4)

|⟨tails | prompt⟩|2 ≈ 0.5 (5)

While this analogy provides a useful and intuitive starting point for understanding the probabilistic nature of LLMs,
it is crucial to recognize its inherent limitations. In the quantum mechanical example, |heads⟩ and |tails⟩ represent
distinct and orthogonal quantum states, not simply vectors in a real-valued embedding space. Furthermore, the
dynamics of a quantum system are governed by the Schrödinger equation, which describes the evolution of the wave
function and the superposition of states. The act of measurement in quantum mechanics also leads to the collapse
of the wave function into a single, definite state. These concepts are not directly mirrored in the standard LLM
architecture. Furthermore, the standard LLM embedding space does not inherently support complex probability
amplitudes, which are essential for describing quantum interference effects. These limitations motivate the need for
a more sophisticated model that can capture the wave-like behavior of semantic representations and incorporate
complex phases, as we will explore in the following sections.
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”heads” and 50% being ”tails.” This empirical observation suggests an underlying probabilistic mechanism governing
the LLM’s output, rather than a purely deterministic process.
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combination of both states. Familiar examples include the spin of a spin-1/2 particle (spin up or spin down) or the
polarization of a photon (horizontal or vertical). The state of a general two-level system can be represented as a
vector in a two-dimensional Hilbert space,

|ψ⟩ = c1|1⟩+ c2|2⟩, (1)

where |1⟩ and |2⟩ represent the two orthonormal basis states, and c1 and c2 are complex probability amplitudes. The
probability of measuring the system in state |1⟩ is given by |c1|2, and the probability of measuring the system in state
|2⟩ is given by |c2|2. These probabilities must sum to one, reflecting the certainty that the system is in one of the two
possible states upon measurement,

|c1|2 + |c2|2 = 1. (2)
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|heads⟩ and |tails⟩ represent the two possible states of the LLM’s response, analogous to the spin-up and spin-down
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respectively. The observed frequencies of ”heads” and ”tails” in the LLM’s output can then be interpreted as the
probabilities of measuring the system in each state,

|⟨heads | prompt⟩|2 ≈ 0.5 (4)
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While this analogy provides a useful and intuitive starting point for understanding the probabilistic nature of LLMs,
it is crucial to recognize its inherent limitations. In the quantum mechanical example, |heads⟩ and |tails⟩ represent
distinct and orthogonal quantum states, not simply vectors in a real-valued embedding space. Furthermore, the
dynamics of a quantum system are governed by the Schrödinger equation, which describes the evolution of the wave
function and the superposition of states. The act of measurement in quantum mechanics also leads to the collapse
of the wave function into a single, definite state. These concepts are not directly mirrored in the standard LLM
architecture. Furthermore, the standard LLM embedding space does not inherently support complex probability
amplitudes, which are essential for describing quantum interference effects. These limitations motivate the need for
a more sophisticated model that can capture the wave-like behavior of semantic representations and incorporate
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phase space, we define a semantic space as the complex 
extension of the embedding space (or, equivalently, the 
configuration space). If the embedding space has dimension 
N, the semantic space has 2N real dimensions. This doubling 
of dimensionality arises from the complex extension, which 
effectively provides 2 degrees of freedom for each original 
dimension in the configuration space. This allows the modeling 
of interference effects and other quantum-like phenomena 
within the semantic space. Analogous to how time is treated 
in classical mechanics, the time taken for an LLM to generate 
a prediction from a given input is considered separately from 
the semantic space itself. While phase space describes the 
possible states of a system at a given time, and time evolution 
traces a trajectory through phase space, the ’time’ dimension 
for LLM prediction generation is not included as a dimension 
within the semantic space. It is a parameter that governs the 
evolution or trajectory through the semantic space.

3.	 Quantized Semantic States: Semantic states are discrete 
and distinct, analogous to the quantization of energy levels 
in quantum systems. This allows us to represent words and 
phrases as distinct quantum states within the semantic space. 
The reliance of LLMs on a finite vocabulary of tokens 
provides a basis for this assumption, suggesting an underlying 
discreteness in their semantic processing.

4.	 Schr¨odinger Equation for Semantic Wave Propagation (Linear 
Model): In our first approach, we treat the semantic space as 
linear. The evolution of the semantic wave function within 
this space is governed by the standard, linear Schr¨odinger 
equation. This equation serves as a fundamental description of 
wave propagation for non-relativistic particles in the absence 
of explicit nonlinear effects. This approximation is valid when 
considering basic semantic relationships and allows us to 
leverage the superposition principle and plane wave solutions.

5.	 Nonlinear Semantic Wave Propagation (Nonlinear Model): 
In our second, more sophisticated approach, we explicitly 
account for the nonlinear nature of the embedding space. We 
model this nonlinearity through two distinct mechanisms: (a) 
by introducing a cubic term directly into the Schr¨odinger 
equation, resulting in a nonlinear Schr¨odinger equation 
(NLSE), and (b) by employing nonlinear potential functions. 
The cubic term allows us to explore phenomena such as 
semantic self-interaction and the formation of semantic 
solitons. Nonlinear potentials, such as the double-well 
potential, enable us to model semantic ambiguity and context-
dependent meaning. This approach is particularly relevant 
when considering complex semantic relationships and 
emergent phenomena.

6.	 Semantic Charge and Interaction: We assume ”semantic 
charge” as a property associated with each word, phrase, 
or semantic concept within the LLM’s vocabulary. (We 
will use this concept in later sections when discussing path 
integrals). This charge is represented by the magnitude of the 
corresponding coefficient in the semantic wave function’s 

expansion in terms of basis states. The interaction between 
semantic charges is mediated by the gauge field, analogous 
to how electromagnetic forces are mediated by photons. 
Specifically, regions of high semantic charge density attract 
or repel each other based on the sign of the coupling constant 
in the nonlinear Schr¨odinger equation or the form of the 
Mexican hat potential. This interaction influences the overall 
semantic structure and coherence of the LLM’s representation.

It is essential to emphasize that these are analogies, not literal 
physical equivalences. They provide a theoretical framework 
for examining LLM behavior. To manage the computational 
complexity introduced by nonlinearity in the nonlinear model, 
we employ approximations when dealing with wave function 
propagation. It’s important to note that exact solutions to nonlinear 
equations are rare; therefore, approximations are frequently 
necessary in these contexts.

5. Extending the Embedding Space: Semantic Interference 
and the Need for Complex Representations
The standard LLM embedding space represents words, phrases, 
and sentences as real-valued vectors. Cosine similarity, a real 
number between -1 and 1, then quantifies the semantic similarity 
between these vectors based on the angle between them. While 
effective, this approach has limitations in capturing more nuanced 
semantic relationships, particularly those involving contextual 
information and interference effects. In this section, we propose a 
theoretical extension where the embedding space is complexified, 
allowing us to represent ”meaning” as a wave function, where the 
phase is crucial for capturing interference effects analogous to 
those observed in quantum mechanics.

5.1. Limitations of Real-Valued Embeddings: The Case for 
Contextual Sensitivity
To illustrate the limitations of the real-valued embedding space 
and motivate the need for complex representations, consider 
the task of categorizing LLM entries or distinguishing nuanced 
differences in word usage. Suppose we want to determine whether 
a given sentence is related to ”dogs” or ”cats,” or, more subtly, 
to differentiate between words with similar overall meaning but 
different contextual appropriateness. We might have the following 
prompts:

The standard approach is to calculate the cosine similarity between 
the embedding of each prompt and the embeddings of ”dogs” and 
”cats.”
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prompt1 = ”I want to talk about cats.” (6)

prompt2 = ”I like cats.” (7)

prompt3 = ”I am afraid of dogs.” (8)

prompt4 = ”Dogs are more loyal than cats.” (9)

The standard approach is to calculate the cosine similarity between the embedding of each prompt and the embeddings
of ”dogs” and ”cats.”

FIG. 1: Principal Component Analysis (PCA) projection of word embeddings for ”dogs,” ”cats,” and example prompts. This
visualization demonstrates the limitations of real-valued embeddings and cosine similarity in capturing nuanced semantic
relationships. While prompts related to ”cats” generally cluster closer to the ”cats” embedding, the overlap between clusters
suggests that context and subtle differences in meaning are not fully captured by this approach.

Given two vectors A⃗ and B⃗, their inner product is defined as

A⃗ · B⃗ = |A⃗||B⃗| cos θ, (10)
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Given two vectors A⃗ and B⃗, their inner product is defined as

                                                            
                                                

from which we obtain the definition of cosine similarity,

The values are normalized are therefore between -1 to 1. Value 1 
corresponds exactly aligned (similar) vector and -1 the most non-
similar. In vector embedding space cosine similarity gives a useful 
measure of how similar two words, sentence or documents are 
likely to be, in terms of their subject matter, and independently of 
the length of the documents. Cosine similarity provides a useful 
measure of semantic similarity, but it only captures the angle 
between the vectors. It does not account for potential interference 
effects that might arise from the superposition of different semantic 
components, nor does it fully capture nuanced differences in word 
usage. In this example, we might obtain the following cosine 
similarities:

SC(prompt1,”dogs”) = 0.7924637278190193	 (12)
SC(prompt1,”cats”) = 0.8691721116453197		  (13)
SC(prompt2,”dogs”) = 0.7948651093796374	 (14)
SC(prompt2,”cats”) = 0.8742215747399027		 (15)
SC(prompt3,”dogs”) = 0.8292989582958668	 (16)
SC(prompt3,”cats”) = 0.7966300696893088		 (17)
SC(prompt4,”dogs”) = 0.8295814659291845	 (18)
SC(prompt4,”cats”) = 0.8215583147667265		 (19)

We may visualize these embeddings using principal component 
analysis (PCA), see Figure 1. Semantically similar words and 
sentencens are closer to each other.

5.2. Semantic Interference: Drawing Parallels to the Double-
Slit Experiment
To capture potential interference effects within the semantic space 
of LLMs, we draw an analogy to the double-slit experiment in 
quantum mechanics, see Figure 2.

In the standard double-slit experiment, particles (e.g., photons 
or electrons) are directed towards a screen with two slits. The 
resulting pattern on a detector screen behind the slits exhibits an 
interference pattern, demonstrating the wave-like nature of the 
particles. The probability distribution on the screen is not simply 
the sum of the probabilities from each slit individually; instead, it 
displays interference fringes due to the superposition of the waves 
emanating from each slit.

The wave functions of the particles passing through each slit can 
be written as

		  ψ1(x,y) = A1(x,y)exp(iφ1), 	               (20)
		
		  ψ2(x,y) = A2(x,y)exp(iφ2),	               (21)

where A1(x,y) and A2(x,y) represent the amplitudes, and φ1 and φ2 
represent the phases of the waves at a point (x,y) on the detector 
screen. The probability distribution is then given by

	

5

V. EXTENDING THE EMBEDDING SPACE: SEMANTIC INTERFERENCE AND THE NEED FOR
COMPLEX REPRESENTATIONS

The standard LLM embedding space represents words, phrases, and sentences as real-valued vectors. Cosine
similarity, a real number between -1 and 1, then quantifies the semantic similarity between these vectors based on the
angle between them. While effective, this approach has limitations in capturing more nuanced semantic relationships,
particularly those involving contextual information and interference effects. In this section, we propose a theoretical
extension where the embedding space is complexified, allowing us to represent ”meaning” as a wave function, where
the phase is crucial for capturing interference effects analogous to those observed in quantum mechanics.

A. Limitations of Real-Valued Embeddings: The Case for Contextual Sensitivity

To illustrate the limitations of the real-valued embedding space and motivate the need for complex representations,
consider the task of categorizing LLM entries or distinguishing nuanced differences in word usage. Suppose we want
to determine whether a given sentence is related to ”dogs” or ”cats,” or, more subtly, to differentiate between words
with similar overall meaning but different contextual appropriateness. We might have the following prompts:

prompt1 = ”I want to talk about cats.” (6)

prompt2 = ”I like cats.” (7)

prompt3 = ”I am afraid of dogs.” (8)

prompt4 = ”Dogs are more loyal than cats.” (9)

The standard approach is to calculate the cosine similarity between the embedding of each prompt and the embeddings
of ”dogs” and ”cats.”

FIG. 1: Principal Component Analysis (PCA) projection of word embeddings for ”dogs,” ”cats,” and example prompts. This
visualization demonstrates the limitations of real-valued embeddings and cosine similarity in capturing nuanced semantic
relationships. While prompts related to ”cats” generally cluster closer to the ”cats” embedding, the overlap between clusters
suggests that context and subtle differences in meaning are not fully captured by this approach.

Given two vectors A⃗ and B⃗, their inner product is defined as

A⃗ · B⃗ = |A⃗||B⃗| cos θ, (10)

5

V. EXTENDING THE EMBEDDING SPACE: SEMANTIC INTERFERENCE AND THE NEED FOR
COMPLEX REPRESENTATIONS

The standard LLM embedding space represents words, phrases, and sentences as real-valued vectors. Cosine
similarity, a real number between -1 and 1, then quantifies the semantic similarity between these vectors based on the
angle between them. While effective, this approach has limitations in capturing more nuanced semantic relationships,
particularly those involving contextual information and interference effects. In this section, we propose a theoretical
extension where the embedding space is complexified, allowing us to represent ”meaning” as a wave function, where
the phase is crucial for capturing interference effects analogous to those observed in quantum mechanics.

A. Limitations of Real-Valued Embeddings: The Case for Contextual Sensitivity

To illustrate the limitations of the real-valued embedding space and motivate the need for complex representations,
consider the task of categorizing LLM entries or distinguishing nuanced differences in word usage. Suppose we want
to determine whether a given sentence is related to ”dogs” or ”cats,” or, more subtly, to differentiate between words
with similar overall meaning but different contextual appropriateness. We might have the following prompts:

prompt1 = ”I want to talk about cats.” (6)

prompt2 = ”I like cats.” (7)

prompt3 = ”I am afraid of dogs.” (8)

prompt4 = ”Dogs are more loyal than cats.” (9)

The standard approach is to calculate the cosine similarity between the embedding of each prompt and the embeddings
of ”dogs” and ”cats.”

FIG. 1: Principal Component Analysis (PCA) projection of word embeddings for ”dogs,” ”cats,” and example prompts. This
visualization demonstrates the limitations of real-valued embeddings and cosine similarity in capturing nuanced semantic
relationships. While prompts related to ”cats” generally cluster closer to the ”cats” embedding, the overlap between clusters
suggests that context and subtle differences in meaning are not fully captured by this approach.

Given two vectors A⃗ and B⃗, their inner product is defined as

A⃗ · B⃗ = |A⃗||B⃗| cos θ, (10)
6

from which we obtain the definition of cosine similarity,

SC(A⃗, B⃗) = cos θ =
A⃗ · B⃗
|A⃗||B⃗|

. (11)

The values are normalized are therefore between -1 to 1. Value 1 corresponds exactly aligned (similar) vector and -1
the most non-similar. In vector embedding space cosine similarity gives a useful measure of how similar two words,
sentence or documents are likely to be, in terms of their subject matter, and independently of the length of the
documents. Cosine similarity provides a useful measure of semantic similarity, but it only captures the angle between
the vectors. It does not account for potential interference effects that might arise from the superposition of different
semantic components, nor does it fully capture nuanced differences in word usage.

In this example, we might obtain the following cosine similarities:

SC(prompt1, ”dogs”) = 0.7924637278190193 (12)

SC(prompt1, ”cats”) = 0.8691721116453197 (13)

SC(prompt2, ”dogs”) = 0.7948651093796374 (14)

SC(prompt2, ”cats”) = 0.8742215747399027 (15)

SC(prompt3, ”dogs”) = 0.8292989582958668 (16)

SC(prompt3, ”cats”) = 0.7966300696893088 (17)

SC(prompt4, ”dogs”) = 0.8295814659291845 (18)

SC(prompt4, ”cats”) = 0.8215583147667265 (19)

We may visualize these embeddings using principal component analysis (PCA), see Figure 1. Semantically similar
words and sentencens are closer to each other.

B. Semantic Interference: Drawing Parallels to the Double-Slit Experiment

To capture potential interference effects within the semantic space of LLMs, we draw an analogy to the double-slit
experiment in quantum mechanics, see Figure 2.

In the standard double-slit experiment, particles (e.g., photons or electrons) are directed towards a screen with two
slits. The resulting pattern on a detector screen behind the slits exhibits an interference pattern, demonstrating the
wave-like nature of the particles. The probability distribution on the screen is not simply the sum of the probabilities
from each slit individually; instead, it displays interference fringes due to the superposition of the waves emanating
from each slit.

The wave functions of the particles passing through each slit can be written as

ψ1(x, y) = A1(x, y) exp(iφ1), (20)

ψ2(x, y) = A2(x, y) exp(iφ2), (21)

where A1(x, y) and A2(x, y) represent the amplitudes, and φ1 and φ2 represent the phases of the waves at a point
(x, y) on the detector screen. The probability distribution is then given by

P (x, y) = |ψ1(x, y) + ψ2(x, y)|2 = |A1(x, y)|2 + |A2(x, y)|2 + 2|A1(x, y)||A2(x, y)| cos(φ1 − φ2). (22)

The crucial term 2|A1(x, y)||A2(x, y)| cos(φ1 − φ2) is the ”interference term,” which arises from the superposition
of the complex probability amplitudes. A purely real formulation lacks the phase information necessary to describe
this interference. The double-slit experiment demonstrates the wave-particle duality of light and matter. Both wave
and particle descriptions are valid, and the theoretical framework used to describe the phenomenon depends on the
experimental setup.
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FIG. 2: The double-slit experiment, illustrating the importance of phase information in capturing interference effects. In analogy
to LLMs, this demonstrates why complex-valued representations are necessary to model the nuanced semantic relationships
that cannot be captured by real-valued embeddings alone.

C. Extending the Analogy: N-Dimensional Semantic Space

We extend our framework to a higher-dimensional space. Consider an analogous experiment conducted within a
phase space of 2N real dimensions, where N represents the dimensionality of the LLM embedding space. An additional
dimension represents time. This higher-dimensional space is designed to capture the intricate relationships between
semantic concepts. In this analogy, each ”slit” corresponds to a distinct semantic context or a particular facet of a
word’s meaning, and the wave function or ”particle” that traverses the slit represents a word, sentence, or paragraph
under investigation.

Given that we are currently focusing on the utilization of pre-trained embeddings, rather than the training process
itself, we are operating within a regime where the explicit nonlinearities of the training process are not directly
considered. Therefore, we treat the semantic space as approximately linear in this context. Consequently, the total
field at any point can be approximated as the linear superposition of the individual fields originating from each ”slit.”
This allows us to model the semantic wave propagation using plane waves and the principle of superposition.

Under these assumptions, we consider a simplified two-slit scenario where two wave functions, denoted as ψ1 and
ψ2, traverse the slits. The total wave function is then given by the superposition

ψ = ψ1 + ψ2. (23)

Approximating these waves as plane waves, we express them as

ψ1(t,x) = A1e
i(k1·x−ω1t+φ1), (24)

ψ2(t,x) = A2e
i(k2·x−ω2t+φ2), (25)

where A1 and A2 represent the amplitudes, k1 and k2 are the wave vectors in high-dimensional space, ω1 and ω2 are
the angular frequencies, φ1 and φ2 are the initial phases. The intensity of the wave function, which can be interpreted
as the probability density, is then
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P = |ψ|2 = |ψ1 + ψ2|2 = |ψ1|2 + |ψ2|2 + 2|ψ1||ψ2| cos(φ1 − φ2 + k1 · x− k2 · x− (ω1 − ω2)t). (26)

For simplicity, we assume that φ1 = 0 and consider the case where ω1 = ω2 = ω. This simplifies the expression to

P = |A1|2 + |A2|2 + 2|A1||A2| cos(−φ2 + (k1 − k2) · x). (27)

Our objective is to relate the term cos(−φ2 + (k1 − k2) · x) to the cosine similarity between the embedding vectors
v1 and v2. We assume that the wave vectors are proportional to the embedding vectors,

k1 = αv1, k2 = αv2, (28)

where α is a proportionality constant. Then

P = |A1|2 + |A2|2 + 2|A1||A2| cos(−φ2 + α(v1 − v2) · x). (29)

Now, assuming that we are evaluating the intensity at the origin, x = 0, we have

P = |A1|2 + |A2|2 + 2|A1||A2| cos(−φ2). (30)

To relate φ2 to the cosine similarity, we assume that the initial phase φ2 is related to the angle between the embedding
vectors. Specifically, φ2 = βθ, where θ is the angle between v1 and v2, and β is another proportionality constant.
Then

P = |A1|2 + |A2|2 + 2|A1||A2| cos(−βθ). (31)

Given that cosine similarity is defined as cos(θ) = (v1 · v2)/(||v1||||v2||), we can write

P = |A1|2 + |A2|2 + 2|A1||A2| cos
(
−β arccos

(
v1 · v2

||v1||||v2||

))
. (32)

This simplified formula provides an approximate means of connecting the intensity (probability of a semantic inter-
pretation) to the cosine similarity between embedding vectors, while also incorporating phase information. The key
point is that the phase difference between the semantic waves plays a crucial role in determining the overall intensity,
analogous to its role in the double-slit experiment. This suggests that a complex-valued representation, which includes
phase, is essential for capturing the nuances of semantic meaning.

The interpretation is similar to the 2D case, but now the interference pattern exists in a much higher-dimensional
space. The phase difference φ1(x) − φ2(x) captures the relative semantic relationships between the two ”slits”
(semantic contexts) at a particular point in the N -dimensional space.

D. Semantic States as Superpositions: Towards Complex Representations

In the context of LLMs, we can think of different semantic components of a prompt as analogous to the waves
emanating from the slits. The overall meaning of the prompt is then determined by the superposition of these
semantic components, which can lead to constructive or destructive interference. This motivates us to extend the
real-valued LLM embedding space to the complex domain. In this complexified space, each word, phrase, or sentence is
represented by a complex vector, and the semantic relationships between them are determined by both the magnitudes
and the phases of these vectors.

For example, we could represent ”prompt1” as

|prompt1⟩ = |c1| exp(iφ1)|dogs⟩+ |c2| exp(iφ2)|cats⟩+
∑
i̸=1,2

|ci| exp(iφi)|ψi⟩, (33)

where |ci| represents the magnitude of the contribution of each basis state |ψi⟩ (e.g., ”dogs,” ”cats,” or other semantic
components), and φi represents the phase. The phase information is crucial for capturing the relative relationships
between different semantic components; for instance, synonyms might have similar magnitudes and similar phases,
while antonyms might have similar magnitudes but opposite phases.
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vectors. Specifically, φ2 = βθ, where θ is the angle between v1 and v2, and β is another proportionality constant.
Then

P = |A1|2 + |A2|2 + 2|A1||A2| cos(−βθ). (31)

Given that cosine similarity is defined as cos(θ) = (v1 · v2)/(||v1||||v2||), we can write

P = |A1|2 + |A2|2 + 2|A1||A2| cos
(
−β arccos

(
v1 · v2

||v1||||v2||

))
. (32)

This simplified formula provides an approximate means of connecting the intensity (probability of a semantic inter-
pretation) to the cosine similarity between embedding vectors, while also incorporating phase information. The key
point is that the phase difference between the semantic waves plays a crucial role in determining the overall intensity,
analogous to its role in the double-slit experiment. This suggests that a complex-valued representation, which includes
phase, is essential for capturing the nuances of semantic meaning.

The interpretation is similar to the 2D case, but now the interference pattern exists in a much higher-dimensional
space. The phase difference φ1(x) − φ2(x) captures the relative semantic relationships between the two ”slits”
(semantic contexts) at a particular point in the N -dimensional space.

D. Semantic States as Superpositions: Towards Complex Representations

In the context of LLMs, we can think of different semantic components of a prompt as analogous to the waves
emanating from the slits. The overall meaning of the prompt is then determined by the superposition of these
semantic components, which can lead to constructive or destructive interference. This motivates us to extend the
real-valued LLM embedding space to the complex domain. In this complexified space, each word, phrase, or sentence is
represented by a complex vector, and the semantic relationships between them are determined by both the magnitudes
and the phases of these vectors.

For example, we could represent ”prompt1” as

|prompt1⟩ = |c1| exp(iφ1)|dogs⟩+ |c2| exp(iφ2)|cats⟩+
∑
i̸=1,2

|ci| exp(iφi)|ψi⟩, (33)

where |ci| represents the magnitude of the contribution of each basis state |ψi⟩ (e.g., ”dogs,” ”cats,” or other semantic
components), and φi represents the phase. The phase information is crucial for capturing the relative relationships
between different semantic components; for instance, synonyms might have similar magnitudes and similar phases,
while antonyms might have similar magnitudes but opposite phases.
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This simplified formula provides an approximate means of connecting the intensity (probability of a semantic inter-
pretation) to the cosine similarity between embedding vectors, while also incorporating phase information. The key
point is that the phase difference between the semantic waves plays a crucial role in determining the overall intensity,
analogous to its role in the double-slit experiment. This suggests that a complex-valued representation, which includes
phase, is essential for capturing the nuances of semantic meaning.
The interpretation is similar to the 2D case, but now the interference pattern exists in a much higher-dimensional
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This simplified formula provides an approximate means of connecting the intensity (probability of a semantic inter-
pretation) to the cosine similarity between embedding vectors, while also incorporating phase information. The key
point is that the phase difference between the semantic waves plays a crucial role in determining the overall intensity,
analogous to its role in the double-slit experiment. This suggests that a complex-valued representation, which includes
phase, is essential for capturing the nuances of semantic meaning.

The interpretation is similar to the 2D case, but now the interference pattern exists in a much higher-dimensional
space. The phase difference φ1(x) − φ2(x) captures the relative semantic relationships between the two ”slits”
(semantic contexts) at a particular point in the N -dimensional space.
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This simplified formula provides an approximate means of connecting the intensity (probability of a semantic inter-
pretation) to the cosine similarity between embedding vectors, while also incorporating phase information. The key
point is that the phase difference between the semantic waves plays a crucial role in determining the overall intensity,
analogous to its role in the double-slit experiment. This suggests that a complex-valued representation, which includes
phase, is essential for capturing the nuances of semantic meaning.

The interpretation is similar to the 2D case, but now the interference pattern exists in a much higher-dimensional
space. The phase difference φ1(x) − φ2(x) captures the relative semantic relationships between the two ”slits”
(semantic contexts) at a particular point in the N -dimensional space.

D. Semantic States as Superpositions: Towards Complex Representations

In the context of LLMs, we can think of different semantic components of a prompt as analogous to the waves
emanating from the slits. The overall meaning of the prompt is then determined by the superposition of these
semantic components, which can lead to constructive or destructive interference. This motivates us to extend the
real-valued LLM embedding space to the complex domain. In this complexified space, each word, phrase, or sentence is
represented by a complex vector, and the semantic relationships between them are determined by both the magnitudes
and the phases of these vectors.

For example, we could represent ”prompt1” as

|prompt1⟩ = |c1| exp(iφ1)|dogs⟩+ |c2| exp(iφ2)|cats⟩+
∑
i̸=1,2

|ci| exp(iφi)|ψi⟩, (33)

where |ci| represents the magnitude of the contribution of each basis state |ψi⟩ (e.g., ”dogs,” ”cats,” or other semantic
components), and φi represents the phase. The phase information is crucial for capturing the relative relationships
between different semantic components; for instance, synonyms might have similar magnitudes and similar phases,
while antonyms might have similar magnitudes but opposite phases.
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where α is a proportionality constant. Then

       

Now, assuming that we are evaluating the intensity at the origin, 
x = 0, we have

                       P = |A1|
2 + |A2|

2 + 2|A1||A2| cos(−φ2).                   (30)   

To relate φ2 to the cosine similarity, we assume that the initial 
phase φ2 is related to the angle between the embedding vectors. 
Specifically, φ2 = βθ, where θ is the angle between v1 and v2, and β 
is another proportionality constant. Then

	 P = |A1|
2 + |A2|2 + 2|A1||A2|cos(−βθ).		            (31)

Given that cosine similarity is defined as cos(θ) = (v1 · v2)/
(||v1||||v2||), we can write

	

This simplified formula provides an approximate means of 
connecting the intensity (probability of a semantic interpretation) 
to the cosine similarity between embedding vectors, while also 
incorporating phase information. The key point is that the phase 
difference between the semantic waves plays a crucial role in 
determining the overall intensity, analogous to its role in the 
double-slit experiment. This suggests that a complex-valued 
representation, which includes phase, is essential for capturing the 
nuances of semantic meaning.

The interpretation is similar to the 2D case, but now the interference 
pattern exists in a much higher-dimensional space. The phase 
difference φ1(x) − φ2(x) captures the relative semantic relationships 
between the two ”slits” (semantic contexts) at a particular point in 
the N -dimensional space.

5.4. Semantic States as Superpositions: Towards Complex 
Representations
In the context of LLMs, we can think of different semantic 
components of a prompt as analogous to the waves emanating from 
the slits. The overall meaning of the prompt is then determined by 
the superposition of these semantic components, which can lead 
to constructive or destructive interference. This motivates us to 
extend the real-valued LLM embedding space to the complex 
domain. In this complexified space, each word, phrase, or sentence 
is represented by a complex vector, and the semantic relationships 
between them are determined by both the magnitudes and the 
phases of these vectors.

For example, we could represent ”prompt1” as

where |ci| represents the magnitude of the contribution of 
each basis state |ψi⟩ (e.g., ”dogs,” ”cats,” or other semantic 
components), and φi represents the phase. The phase information 
is crucial for capturing the relative relationships between different 
semantic components; for instance, synonyms might have similar 
magnitudes and similar phases, while antonyms might have similar 
magnitudes but opposite phases.

5.5. Illustrative Example: Semantic Clustering and Similarity
To further illustrate the potential of complex embeddings, consider 
a simplified program that scans the alphabet to find words with 
close similarity scores for words ”dog” and ”cat”. The script gives 
the cosine similarity difference as

	 ∆d = |SC(’Letter’,dog) − SC(’Letter’,cat)|.         (34)

As an example (Letter:, ”alphabet”, ∆d):
Letter: a 0.03202649985101025
Letter: b 0.023594058171430343
Letter: c 0.017036352475257588
Letter: t 0.012467653389398925
Best letter for length 1: t with difference 0.012467653389398925
Letter: aa 0.021800746027967888
Letter: ab 0.003948614333593059
Letter: aq 0.002333507704697757
Letter: bk 0.0016448531528867605
Letter: cp 0.0009932341767737718
Letter: kh 0.0002932433299662751
Letter: mc 0.0002022452982680667
Best letter for length 2: mc with difference 0.0002022452982680667
Letter: aaa 0.016703392191957933
Letter: aab 0.014940121087262392
Letter: aac 0.00106761509332709
Letter: acx 6.381206526662186e-05
Letter: cas 1.5506346889848643e-06
Best letter for length 3: cas with difference 1.5506346889848643e-
06

We observe that as the number of letters increases, groups of three 
words tend to exhibit tighter semantic clustering, with two of 
the words being semantically closer to the third. This increased 
clustering is reflected in a lower cosine similarity between the 
word pairs (indicating greater similarity), a trend that presumably 
continues with further increases in letter count. It’s also possible 
that longer words lead to the formation of a greater number of 
distinct semantic clusters, which are themselves relatively distant 
from each other in the overall semantic space.
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P = |ψ|2 = |ψ1 + ψ2|2 = |ψ1|2 + |ψ2|2 + 2|ψ1||ψ2| cos(φ1 − φ2 + k1 · x− k2 · x− (ω1 − ω2)t). (26)

For simplicity, we assume that φ1 = 0 and consider the case where ω1 = ω2 = ω. This simplifies the expression to

P = |A1|2 + |A2|2 + 2|A1||A2| cos(−φ2 + (k1 − k2) · x). (27)

Our objective is to relate the term cos(−φ2 + (k1 − k2) · x) to the cosine similarity between the embedding vectors
v1 and v2. We assume that the wave vectors are proportional to the embedding vectors,

k1 = αv1, k2 = αv2, (28)

where α is a proportionality constant. Then

P = |A1|2 + |A2|2 + 2|A1||A2| cos(−φ2 + α(v1 − v2) · x). (29)

Now, assuming that we are evaluating the intensity at the origin, x = 0, we have

P = |A1|2 + |A2|2 + 2|A1||A2| cos(−φ2). (30)

To relate φ2 to the cosine similarity, we assume that the initial phase φ2 is related to the angle between the embedding
vectors. Specifically, φ2 = βθ, where θ is the angle between v1 and v2, and β is another proportionality constant.
Then

P = |A1|2 + |A2|2 + 2|A1||A2| cos(−βθ). (31)

Given that cosine similarity is defined as cos(θ) = (v1 · v2)/(||v1||||v2||), we can write

P = |A1|2 + |A2|2 + 2|A1||A2| cos
(
−β arccos

(
v1 · v2
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))
. (32)

This simplified formula provides an approximate means of connecting the intensity (probability of a semantic inter-
pretation) to the cosine similarity between embedding vectors, while also incorporating phase information. The key
point is that the phase difference between the semantic waves plays a crucial role in determining the overall intensity,
analogous to its role in the double-slit experiment. This suggests that a complex-valued representation, which includes
phase, is essential for capturing the nuances of semantic meaning.

The interpretation is similar to the 2D case, but now the interference pattern exists in a much higher-dimensional
space. The phase difference φ1(x) − φ2(x) captures the relative semantic relationships between the two ”slits”
(semantic contexts) at a particular point in the N -dimensional space.

D. Semantic States as Superpositions: Towards Complex Representations

In the context of LLMs, we can think of different semantic components of a prompt as analogous to the waves
emanating from the slits. The overall meaning of the prompt is then determined by the superposition of these
semantic components, which can lead to constructive or destructive interference. This motivates us to extend the
real-valued LLM embedding space to the complex domain. In this complexified space, each word, phrase, or sentence is
represented by a complex vector, and the semantic relationships between them are determined by both the magnitudes
and the phases of these vectors.

For example, we could represent ”prompt1” as

|prompt1⟩ = |c1| exp(iφ1)|dogs⟩+ |c2| exp(iφ2)|cats⟩+
∑
i̸=1,2

|ci| exp(iφi)|ψi⟩, (33)

where |ci| represents the magnitude of the contribution of each basis state |ψi⟩ (e.g., ”dogs,” ”cats,” or other semantic
components), and φi represents the phase. The phase information is crucial for capturing the relative relationships
between different semantic components; for instance, synonyms might have similar magnitudes and similar phases,
while antonyms might have similar magnitudes but opposite phases.
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This simplified formula provides an approximate means of connecting the intensity (probability of a semantic inter-
pretation) to the cosine similarity between embedding vectors, while also incorporating phase information. The key
point is that the phase difference between the semantic waves plays a crucial role in determining the overall intensity,
analogous to its role in the double-slit experiment. This suggests that a complex-valued representation, which includes
phase, is essential for capturing the nuances of semantic meaning.

The interpretation is similar to the 2D case, but now the interference pattern exists in a much higher-dimensional
space. The phase difference φ1(x) − φ2(x) captures the relative semantic relationships between the two ”slits”
(semantic contexts) at a particular point in the N -dimensional space.
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semantic components, which can lead to constructive or destructive interference. This motivates us to extend the
real-valued LLM embedding space to the complex domain. In this complexified space, each word, phrase, or sentence is
represented by a complex vector, and the semantic relationships between them are determined by both the magnitudes
and the phases of these vectors.

For example, we could represent ”prompt1” as
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where |ci| represents the magnitude of the contribution of each basis state |ψi⟩ (e.g., ”dogs,” ”cats,” or other semantic
components), and φi represents the phase. The phase information is crucial for capturing the relative relationships
between different semantic components; for instance, synonyms might have similar magnitudes and similar phases,
while antonyms might have similar magnitudes but opposite phases.
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This simplified formula provides an approximate means of connecting the intensity (probability of a semantic inter-
pretation) to the cosine similarity between embedding vectors, while also incorporating phase information. The key
point is that the phase difference between the semantic waves plays a crucial role in determining the overall intensity,
analogous to its role in the double-slit experiment. This suggests that a complex-valued representation, which includes
phase, is essential for capturing the nuances of semantic meaning.
The interpretation is similar to the 2D case, but now the interference pattern exists in a much higher-dimensional
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For simplicity, we assume that φ1 = 0 and consider the case where ω1 = ω2 = ω. This simplifies the expression to

P = |A1|2 + |A2|2 + 2|A1||A2| cos(−φ2 + (k1 − k2) · x). (27)

Our objective is to relate the term cos(−φ2 + (k1 − k2) · x) to the cosine similarity between the embedding vectors
v1 and v2. We assume that the wave vectors are proportional to the embedding vectors,

k1 = αv1, k2 = αv2, (28)

where α is a proportionality constant. Then

P = |A1|2 + |A2|2 + 2|A1||A2| cos(−φ2 + α(v1 − v2) · x). (29)

Now, assuming that we are evaluating the intensity at the origin, x = 0, we have

P = |A1|2 + |A2|2 + 2|A1||A2| cos(−φ2). (30)

To relate φ2 to the cosine similarity, we assume that the initial phase φ2 is related to the angle between the embedding
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Then

P = |A1|2 + |A2|2 + 2|A1||A2| cos(−βθ). (31)

Given that cosine similarity is defined as cos(θ) = (v1 · v2)/(||v1||||v2||), we can write

P = |A1|2 + |A2|2 + 2|A1||A2| cos
(
−β arccos
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))
. (32)

This simplified formula provides an approximate means of connecting the intensity (probability of a semantic inter-
pretation) to the cosine similarity between embedding vectors, while also incorporating phase information. The key
point is that the phase difference between the semantic waves plays a crucial role in determining the overall intensity,
analogous to its role in the double-slit experiment. This suggests that a complex-valued representation, which includes
phase, is essential for capturing the nuances of semantic meaning.
The interpretation is similar to the 2D case, but now the interference pattern exists in a much higher-dimensional

space. The phase difference φ1(x) − φ2(x) captures the relative semantic relationships between the two ”slits”
(semantic contexts) at a particular point in the N -dimensional space.

D. Semantic States as Superpositions: Towards Complex Representations

In the context of LLMs, we can think of different semantic components of a prompt as analogous to the waves
emanating from the slits. The overall meaning of the prompt is then determined by the superposition of these
semantic components, which can lead to constructive or destructive interference. This motivates us to extend the
real-valued LLM embedding space to the complex domain. In this complexified space, each word, phrase, or sentence is
represented by a complex vector, and the semantic relationships between them are determined by both the magnitudes
and the phases of these vectors.
For example, we could represent ”prompt1” as

|prompt1⟩ = |c1| exp(iφ1)|dogs⟩+ |c2| exp(iφ2)|cats⟩+
∑
i̸=1,2

|ci| exp(iφi)|ψi⟩, (33)

where |ci| represents the magnitude of the contribution of each basis state |ψi⟩ (e.g., ”dogs,” ”cats,” or other semantic
components), and φi represents the phase. The phase information is crucial for capturing the relative relationships
between different semantic components; for instance, synonyms might have similar magnitudes and similar phases,
while antonyms might have similar magnitudes but opposite phases.
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phase, is essential for capturing the nuances of semantic meaning.
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point is that the phase difference between the semantic waves plays a crucial role in determining the overall intensity,
analogous to its role in the double-slit experiment. This suggests that a complex-valued representation, which includes
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The program identifies ”cas” as being very similar to ”dog” and 
”cat” according to some real-valued similarity metric. We might 
represent this in our complexified space as

where, for the sake of example, we have the same cosine similarity 
for both phases,

		  φ1 = 0.82422 φ2 = 0.82422            (36)

This output suggests that ’cas’ and ’acx’ exhibit a high degree of 
similarity within the embedding space. However, cosine similarity 
alone fails to capture the specific differences in meaning and usage 
that differentiate these terms. While both might relate to the general 
concept of a ’situation,’ their specific connotations and contextual 
appropriateness may vary significantly.

In a complexified embedding space, the phase component could 
encode these subtle distinctions. For instance, if we consider 
the word ’situation’ as a superposition of basis states, the phase 

relationships between ’situation’ and ’cas’ might differ from those 
between ’situation’ and ’acx,’ reflecting their varying degrees of 
formality or technicality. This phase information, absent in real-
valued embeddings, could provide a more refined measure of 
semantic similarity, enabling LLMs to generate more contextually 
appropriate and nuanced text.

5.6. The Mexican Hat Potential: A Geometrical Interpretation 
of Semantic Similarity
The cosine similarity in the real-valued embedding space can be 
seen as a projection of the complex similarity onto the real axis. The 
phase difference between two complex vectors then determines the 
value of the cosine similarity.

To preserve the continuous nature of the similarity measure and 
ensure that it remains bounded between -1 and 1, we could also 
consider a potential with circular symmetry in the complex plane. 
A potential that exhibits this symmetry is the Mexican hat potential, 
which allows for a continuous range of phase values while 
maintaining a well-defined minimum energy state, see Figure 3. 
The magnitude |ci| of the coefficient represents the ”distance” from 
the center of the hat. A larger magnitude means the state is further 
away from the center. Parameter φi can have values [0,2π] and it 
represents the angle around the circle at the bottom of the hat.

9

E. Illustrative Example: Semantic Clustering and Similarity

To further illustrate the potential of complex embeddings, consider a simplified program that scans the alphabet to
find words with close similarity scores for words ”dog” and ”cat”. The script gives the cosine similarity difference as

∆d = |SC(’Letter’,dog)− SC(’Letter’, cat)|. (34)

As an example (Letter:, ”alphabet”, ∆d):

Letter: a 0.03202649985101025
Letter: b 0.023594058171430343
Letter: c 0.017036352475257588
Letter: t 0.012467653389398925
Best letter for length 1: t with difference 0.012467653389398925
Letter: aa 0.021800746027967888
Letter: ab 0.003948614333593059
Letter: aq 0.002333507704697757
Letter: bk 0.0016448531528867605
Letter: cp 0.0009932341767737718
Letter: kh 0.0002932433299662751
Letter: mc 0.0002022452982680667
Best letter for length 2: mc with difference 0.0002022452982680667
Letter: aaa 0.016703392191957933
Letter: aab 0.014940121087262392
Letter: aac 0.00106761509332709
Letter: acx 6.381206526662186e-05
Letter: cas 1.5506346889848643e-06
Best letter for length 3: cas with difference 1.5506346889848643e-06

We observe that as the number of letters increases, groups of three words tend to exhibit tighter semantic clustering,
with two of the words being semantically closer to the third. This increased clustering is reflected in a lower cosine
similarity between the word pairs (indicating greater similarity), a trend that presumably continues with further
increases in letter count. It’s also possible that longer words lead to the formation of a greater number of distinct
semantic clusters, which are themselves relatively distant from each other in the overall semantic space.
The program identifies ”cas” as being very similar to ”dog” and ”cat” according to some real-valued similarity

metric. We might represent this in our complexified space as

|cas⟩ = |c1| exp(iφ1)|dog⟩+ |c2| exp(iφ2)|cat⟩+
∑
i̸=1,2

|ci| exp(iφi)|ψi⟩, (35)

where, for the sake of example, we have the same cosine similarity for both phases,

φ1 = 0.82422 φ2 = 0.82422 (36)

This output suggests that ’cas’ and ’acx’ exhibit a high degree of similarity within the embedding space. However, co-
sine similarity alone fails to capture the specific differences in meaning and usage that differentiate these terms. While
both might relate to the general concept of a ’situation,’ their specific connotations and contextual appropriateness
may vary significantly.
In a complexified embedding space, the phase component could encode these subtle distinctions. For instance, if we

consider the word ’situation’ as a superposition of basis states, the phase relationships between ’situation’ and ’cas’
might differ from those between ’situation’ and ’acx,’ reflecting their varying degrees of formality or technicality. This
phase information, absent in real-valued embeddings, could provide a more refined measure of semantic similarity,
enabling LLMs to generate more contextually appropriate and nuanced text.
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F. The Mexican Hat Potential: A Geometrical Interpretation of Semantic Similarity

The cosine similarity in the real-valued embedding space can be seen as a projection of the complex similarity onto
the real axis. The phase difference between two complex vectors then determines the value of the cosine similarity.
To preserve the continuous nature of the similarity measure and ensure that it remains bounded between -1 and

1, we could also consider a potential with circular symmetry in the complex plane. A potential that exhibits this
symmetry is the Mexican hat potential, which allows for a continuous range of phase values while maintaining a
well-defined minimum energy state, see Figure 3. The magnitude |ci| of the coefficient represents the ”distance” from
the center of the hat. A larger magnitude means the state is further away from the center. Parameter φi can have
values [0, 2π] and it represents the angle around the circle at the bottom of the hat.

ℜ(ci)ℑ(ci)

|state⟩

FIG. 3: The Mexican hat potential, illustrating the concept of spontaneous symmetry breaking. In the context of LLMs,
this potential can be used to model the emergence of stable semantic meanings, where the system ”chooses” a particular
interpretation despite the potential’s inherent symmetry.

The Mexican hat potential is crucial in quantum mechanics and quantum field theory for illustrating spontaneous
symmetry breaking, where the system selects a specific vacuum state despite the potential’s symmetry. This symmetry
breaking leads to Goldstone bosons or, via the Higgs mechanism, massive gauge bosons, which are essential for
understanding fundamental phenomena in particle physics, superconductivity, and cosmology.

VI. SEMANTIC WAVE FUNCTION: A QUANTUM MECHANICAL FORMULATION OF MEANING

In this section, we introduce a quantum mechanical formulation of meaning within LLMs, building upon the analogy
of a quantized semantic space. Our goal is to develop a tractable and interpretable model for understanding certain
aspects of LLM behavior, such as the superposition of semantic states and the potential for interference effects. While
we acknowledge that LLMs are inherently nonlinear systems, we choose to focus on linear calculations in this section
in order to simplify the mathematical analysis and to gain a more intuitive understanding of these key phenomena.
We recognize that this simplification limits the scope of the model and that it may not be able to capture all aspects
of LLM behavior. However, we believe that this linear formulation provides a valuable starting point for exploring
the potential connections between quantum mechanics and natural language processing, and that it can serve as a
foundation for future extensions that incorporate nonlinearity.
The foundation of our analogy lies in the observation that LLMs operate with a finite vocabulary. This means that

the embedding space is not a continuous space, but rather a discrete space built upon a finite set of words or tokens.
We propose that each word or token in the LLM’s vocabulary corresponds to a basis state in a quantum system. We
denote these basis states as |ψi⟩, where ψi represents the i-th word or token in the vocabulary. These basis states form
a discrete and (ideally) complete basis for representing semantic information within the LLM. While the vocabulary
is finite and therefore not truly complete in a mathematical sense, we can treat it as an approximation of a complete
basis for the purposes of our analogy. The embedding vectors learned by the LLM can be seen as a representation of
these basis states in a particular coordinate system. In other words, the embedding vector for a word ψi is a vector
that specifies the ”direction” of the basis state |ψi⟩ in the high-dimensional embedding space.

To formalize this, we define a semantic linear operator Ψ̃(W,C), where W represents a word or phrase, and C
represents the context in which it is used. We postulate that this operator acts on states |ψi⟩ in the following way,

Figure 3: The Mexican hat potential, illustrating the concept of spontaneous symmetry breaking. In the context of LLMs, this potential 
can be used to model the emergence of stable semantic meanings, where the system ”chooses” a particular interpretation despite the 
potential’s inherent symmetry.

The Mexican hat potential is crucial in quantum mechanics and 
quantum field theory for illustrating spontaneous symmetry 
breaking, where the system selects a specific vacuum state 
despite the potential’s symmetry. This symmetry breaking leads 
to Goldstone bosons or, via the Higgs mechanism, massive 
gauge bosons, which are essential for understanding fundamental 
phenomena in particle physics, superconductivity, and cosmology.

6. Semantic Wave Function: A Quantum Mechanical 
Formulation of Meaning
In this section, we introduce a quantum mechanical formulation of 
meaning within LLMs, building upon the analogy of a quantized 
semantic space. Our goal is to develop a tractable and interpretable 
model for understanding certain aspects of LLM behavior, such as 

the superposition of semantic states and the potential for interference 
effects. While we acknowledge that LLMs are inherently nonlinear 
systems, we choose to focus on linear calculations in this section 
in order to simplify the mathematical analysis and to gain a more 
intuitive understanding of these key phenomena. We recognize 
that this simplification limits the scope of the model and that it 
may not be able to capture all aspects of LLM behavior. However, 
we believe that this linear formulation provides a valuable starting 
point for exploring the potential connections between quantum 
mechanics and natural language processing, and that it can serve 
as a foundation for future extensions that incorporate nonlinearity.

The foundation of our analogy lies in the observation that LLMs 
operate with a finite vocabulary. This means that the embedding 
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space is not a continuous space, but rather a discrete space built 
upon a finite set of words or tokens. We propose that each word 
or token in the LLM’s vocabulary corresponds to a basis state in 
a quantum system. We denote these basis states as |ψi⟩, where ψi 
represents the i-th word or token in the vocabulary. These basis 
states form a discrete and (ideally) complete basis for representing 
semantic information within the LLM. While the vocabulary is 
finite and therefore not truly complete in a mathematical sense, 
we can treat it as an approximation of a complete basis for the 
purposes of our analogy. The embedding vectors learned by the 
LLM can be seen as a representation of these basis states in a 
particular coordinate system. In other words, the embedding vector 
for a word ψi is a vector that specifies the ”direction” of the basis 
state |ψi⟩ in the high-dimensional embedding space.

To formalize this, we define a semantic linear operator Ψ(˜ W,C), 
where W represents a word or phrase, and C represents the context 
in which it is used. We postulate that this operator acts on states 
|ψi⟩ in the following way, 

Here, Ai(W,C) is the eigenvalue corresponding to the eigenstate 
|ψi⟩. This eigenvalue represents the amplitude for the word W to 
be associated with the semantic component represented by |ψi⟩ in 
the context C. The eigenstates |ψi⟩ form a complete basis for the 
semantic space, meaning that any semantic state can be expressed 
as a linear combination of these eigenstates,
	                 

where ci are complex coefficients that determine the contribution 
of each basis state to the overall meaning. The magnitude of ci 
represents the strength of that aspect of the word’s meaning in the 
given context, and the phase of ci encodes additional semantic 
information, as discussed in the previous section.

We can also express the semantic state in terms of the eigenstates 
of the semantic operator,
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we argue that allowing ci to be complex enables us to capture more nuanced semantic relationships and interference
effects. If we are measuring the state probabilities, they are in any case always treated as absolute values like |ci|.

A. Example: Probabilistic Response Generation

To illustrate this formulation, consider the following example. The system prompt is ”You are a helpful AI assistant.”
The user prompt is ”””Sun is shining. It is morning. It is dark. Is the sky blue? Answer ”yes” or ”no”. Use in output
only words ”yes” or ”no” ”””. We make two tests. First with the temperature = 0.9 and top p = 1.0. The expected
state is

|prompt⟩ = c1|yes⟩+ c2|no⟩+
∑
i̸=1,2

ciAi(W,C)|ψi⟩. (40)

We enter the prompt 10 times. The result is:

|⟨No | prompt⟩|2 = 0.3 (41)

|⟨No. | prompt⟩|2 = 0.6 (42)

|⟨no | prompt⟩|2 = 0.1 (43)

In the next test, the temperature = 0.1 and top p = 1.0. The result is

|⟨No. | prompt⟩|2 = 0.9 (44)

|⟨no | prompt⟩|2 = 0.1 (45)

This example demonstrates how the LLM’s response can be interpreted as a superposition of basis states, with the
coefficients reflecting the probabilities of each state.
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B. Semantic Distinctness: Cosine Similarity Analysis

To further illustrate the distinctness of semantic states, we perform a cosine similarity analysis on a set of related
words. Using the OpenAI embeddings model, we calculate the cosine similarity between the word ”no” and several
other words, including variations in capitalization and punctuation, as well as semantically related and unrelated
terms. The results are as follows:

SC(”no”, ”no”) = 0.9999999999999998 (46)

SC(”no”, ”No”) = 0.9694166470120369 (47)

SC(”no”, ”no.”) = 0.9020864046438366 (48)

SC(”no”, ”nobody”) = 0.8278024059292596 (49)

SC(”no”, ”mono”) = 0.8001234585682817 (50)

As the results demonstrate, only SC(”no”, ”no”) achieves a cosine similarity of 1, indicating perfect alignment in the
embedding space. All other words exhibit lower similarity scores, highlighting their distinct semantic states. Even
minor variations in capitalization or punctuation result in deviations from perfect similarity. This analysis underscores
the concept that each word, even those closely related in meaning or form, occupies a unique position in the semantic
space and represents a distinct basis state.

VII. MODELING SEMANTIC AMBIGUITY: THE DOUBLE-WELL POTENTIAL

In the previous section, we introduced the concept of a semantic wave function to represent the meaning of a word
or phrase in a given context. However, words often have multiple meanings, and the appropriate meaning depends
on the context in which the word is used. To model this semantic ambiguity, we turn to the concept of a double-well
potential from quantum mechanics.

FIG. 4: The double-well potential, illustrating how context can influence the interpretation of a word in LLMs. The two minima
represent different meanings, and the ”tunneling” effect represents the LLM’s ability to switch between these meanings based
on the surrounding context.

A double-well potential is a potential energy function with two minima separated by a barrier, see Figure 4. While
not directly analogous to the Mexican hat potential discussed earlier, it provides a useful framework for understanding
systems with two stable states and transitions between them. Double-well potentials appear in diverse fields like
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A double-well potential is a potential energy function with two 
minima separated by a barrier, see Figure 4. While not directly 
analogous to the Mexican hat potential discussed earlier, it provides 
a useful framework for understanding systems with two stable 
states and transitions between them. Double-well potentials appear 
in diverse fields like molecular physics and condensed matter, 
and their importance lies in illustrating fundamental concepts 
of symmetry breaking and quantum tunneling in a simplified, 
tractable system.

A typical mathematical form for a double-well potential is

where c and v are positive constants. This potential has minima at 
x = ±v.

The key characteristic of the double-well potential is that a particle 
placed in this potential will tend to settle into either minimum. 
Even though the potential is symmetric under reflection (x → −x), 
the particle ”chooses” one of the two minima, effectively breaking 
the symmetry. Furthermore, in quantum mechanics, a particle can 
tunnel through the potential barrier separating the two minima. 
This means that the particle can transition from one minimum to 
the other, even if it doesn’t have enough energy to overcome the 
barrier classically.

We propose that the double-well potential can be used to model 
semantic ambiguity in LLMs. Consider a word like ”bank,” which 
can refer to a financial institution or the side of a river. We can 
represent these two meanings as the two minima of a double-

well potential. The context in which the word ”bank” is used 
then determines which minimum the semantic wave function will 
settle into. For example, in the sentence ”The bank is open today,” 
the context suggests that ”bank” refers to a financial institution. 
The semantic wave function for ”bank” in this context, which 
we can denote as |S(”bank”,C1)⟩, will have a high amplitude in 
the minimum corresponding to the financial institution meaning. 
Conversely, in the sentence ”The bank of the river is eroding,” 
the context suggests that ”bank” refers to the side of a river. The 
semantic wave function for ”bank” in this context, which we 
can denote as |S(”bank”,C2)⟩, will have a high amplitude in the 
minimum corresponding to the riverbank meaning.

The ability of a particle to tunnel between the two minima in a 
double-well potential can be seen as analogous to the LLM’s 
ability to switch between different interpretations of a word or 
phrase depending on the context. A slight change in context can be 
seen as a perturbation that alters the potential landscape, causing 
the semantic wave function to tunnel from one minimum to the 
other. To illustrate this, we can consider how changes in context C 
affect the distribution of meanings. This is similar to how external 
potentials or interactions can alter the wave function in quantum 
mechanics. Suppose the context C changes slightly, such as by 
adding a new word or altering the sentence structure. This change 
can be represented as a perturbation ∆c, leading to a change in the 
semantic wave function,
                            
		

where δci represents the change in the coefficient of the basis state 
|ψi⟩ due to the context variation ∆c.
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V (x) = c(x2 − v2)2, (51)

where c and v are positive constants. This potential has minima at x = ±v.
The key characteristic of the double-well potential is that a particle placed in this potential will tend to settle into

either minimum. Even though the potential is symmetric under reflection (x → −x), the particle ”chooses” one of the
two minima, effectively breaking the symmetry. Furthermore, in quantum mechanics, a particle can tunnel through
the potential barrier separating the two minima. This means that the particle can transition from one minimum to
the other, even if it doesn’t have enough energy to overcome the barrier classically.

We propose that the double-well potential can be used to model semantic ambiguity in LLMs. Consider a word
like ”bank,” which can refer to a financial institution or the side of a river. We can represent these two meanings
as the two minima of a double-well potential. The context in which the word ”bank” is used then determines which
minimum the semantic wave function will settle into.

For example, in the sentence ”The bank is open today,” the context suggests that ”bank” refers to a financial
institution. The semantic wave function for ”bank” in this context, which we can denote as |S(”bank”, C1)⟩, will have
a high amplitude in the minimum corresponding to the financial institution meaning. Conversely, in the sentence
”The bank of the river is eroding,” the context suggests that ”bank” refers to the side of a river. The semantic
wave function for ”bank” in this context, which we can denote as |S(”bank”, C2)⟩, will have a high amplitude in the
minimum corresponding to the riverbank meaning.

The ability of a particle to tunnel between the two minima in a double-well potential can be seen as analogous
to the LLM’s ability to switch between different interpretations of a word or phrase depending on the context. A
slight change in context can be seen as a perturbation that alters the potential landscape, causing the semantic wave
function to tunnel from one minimum to the other.

To illustrate this, we can consider how changes in context C affect the distribution of meanings. This is similar to
how external potentials or interactions can alter the wave function in quantum mechanics. Suppose the context C
changes slightly, such as by adding a new word or altering the sentence structure. This change can be represented as
a perturbation ∆c, leading to a change in the semantic wave function,

|S′(W,C +∆c)⟩ =
∑
i

(ci + δci) |ψi⟩, (52)

where δci represents the change in the coefficient of the basis state |ψi⟩ due to the context variation ∆c.
In summary, the double-well potential provides a useful metaphor for understanding how LLMs handle semantic

ambiguity. By representing different meanings of a word as different minima in a potential landscape, we can leverage
the mathematical tools of quantum mechanics to analyze and understand the context-dependent nature of word
meanings. The ability of the semantic wave function to tunnel between these minima reflects the LLM’s ability to
switch between different interpretations based on the surrounding context.

VIII. A COMPLEX-VALUED SIMILARITY MEASURE FOR SEMANTIC REPRESENTATIONS

In previous sections, we established the framework for representing semantic information using complex-valued
wave functions. This representation allows us to capture not only the magnitude but also the phase of each semantic
component, enabling the modeling of interference effects and more nuanced semantic relationships. In this section,
we introduce a new similarity measure that takes into account both the magnitudes and the phases of these complex-
valued semantic representations.

Traditional cosine similarity, which operates on real-valued vectors, only captures the angular relationship between
two vectors. It disregards the phase information that is crucial for capturing semantic interference. To address
this limitation, we define a complex-valued similarity measure that incorporates both the magnitudes and the phase
differences between the complex coefficients of the semantic wave functions.

Let |text1⟩ and |text2⟩ be two texts represented as superpositions of semantic concepts,
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In summary, the double-well potential provides a useful metaphor for understanding how LLMs handle semantic

ambiguity. By representing different meanings of a word as different minima in a potential landscape, we can leverage
the mathematical tools of quantum mechanics to analyze and understand the context-dependent nature of word
meanings. The ability of the semantic wave function to tunnel between these minima reflects the LLM’s ability to
switch between different interpretations based on the surrounding context.

VIII. A COMPLEX-VALUED SIMILARITY MEASURE FOR SEMANTIC REPRESENTATIONS

In previous sections, we established the framework for representing semantic information using complex-valued
wave functions. This representation allows us to capture not only the magnitude but also the phase of each semantic
component, enabling the modeling of interference effects and more nuanced semantic relationships. In this section,
we introduce a new similarity measure that takes into account both the magnitudes and the phases of these complex-
valued semantic representations.
Traditional cosine similarity, which operates on real-valued vectors, only captures the angular relationship between

two vectors. It disregards the phase information that is crucial for capturing semantic interference. To address
this limitation, we define a complex-valued similarity measure that incorporates both the magnitudes and the phase
differences between the complex coefficients of the semantic wave functions.
Let |text1⟩ and |text2⟩ be two texts represented as superpositions of semantic concepts,
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where c∗1i is the complex conjugate of c1i. This similarity measure sums the products of the complex coefficients for
each basis state. The magnitude of the resulting complex number provides a measure of the overall similarity between
the two texts, while the phase provides information about their relative orientation in the semantic space.
To illustrate this, consider a simplified example with two semantic concepts: ”happy” and ”sad.” Let
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and consider the following texts
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This value is relatively low, indicating that the two texts are not very similar according to this measure. This makes
sense because one text expresses happiness, while the other expresses a lack of happiness. The phase of the similarity
provides information about the relative orientation of the two texts in the semantic space.
This example demonstrates how the complex-valued similarity measure can capture subtle semantic differences that
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influence its behavior.
The path integral formulation is based on the idea that the probability amplitude for a system to evolve from an
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functional is

15

Z =

∫
D[ψ]D[ψ∗] exp (iS[ψ,ψ∗]) , (64)

where the action is defined as

S[ψ,ψ∗] =

∫
dt

∫
dNxL[ψ,ψ∗]. (65)

The Langrangian density L[ψ,ψ∗] defines the dynamics of a system in N -dimensional phase. In our context, the
”system” is the semantic wave function, the ”initial state” is the initial meaning of a prompt, and the ”final state”
is the LLM’s response. Our goal is to derive an ”effective” action that describes the dynamics of this semantic wave
function.

A. Lagrangian Density and Nonlinearity

We begin by establishing a baseline using the linear Schrödinger equation. While LLMs are inherently nonlinear
systems due to their neural network architectures and training processes, analyzing the linear case first provides a
valuable point of comparison for understanding the effects of incorporating nonlinearity. This approach allows us to
isolate and understand the specific contributions of nonlinear terms in shaping the dynamics of the semantic wave
function.
To introduce nonlinearity, we consider two distinct mechanisms: (1) the addition of a cubic term to the wave

equation, resulting in a nonlinear Schrödinger equation, and (2) the introduction of a Mexican hat potential.
The nonlinear Schrödinger equation, characterized by a cubic term, is a common starting point for studying nonlin-

ear quantum systems. This nonlinearity allows the semantic wave function to interact with itself. The strength and
nature of this self-interaction is determined by the coupling constant, γ. A positive coupling constant (γ > 0) can
be interpreted as semantic self-reinforcement, where the presence of a particular semantic meaning enhances itself.
Conversely, a negative coupling constant (γ < 0) represents semantic self-inhibition, where the presence of a seman-
tic meaning suppresses its own presence. These interpretations allow us to relate the parameter γ to the semantic
coherence and diversity of the LLM.
The second approach to introducing nonlinearity involves the Mexican hat potential. This potential, already

discussed in earlier sections, provides an alternative mechanism for capturing nonlinear effects and for the spontaneous
symmetry breaking that can happen within the LLM.
Based on these considerations, we propose the following Lagrangian density for the semantic wave function,

L = LS + LN =
iℏ
2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− ℏ2

2m

N∑
i=1

∣∣∣∣
∂ψ

∂xi

∣∣∣∣
2

+ LN . (66)

Here, ψ(t, x⃗) represents the semantic wave function, where N is the dimension of the embedded space with spatial
coordinates x⃗. Setting ℏ = 1 and m = 1 implies that we are measuring energy and momentum in dimensionless
units, which simplifies the mathematical treatment but requires careful consideration when interpreting the physical
meaning of the parameters. The Lagrangian LS epresents the linear Schrödinger equation and corresponds to the
propagation of a classical free particle, while the term LN encompasses the nonlinear components.

For the nonlinear Schrödinger equation, the nonlinearity has the form

LN = LNS = −γ

2
|ψ|4, (67)

where γ is the coupling constant mentioned prior, and it determines the strength of the nonlinear self-interaction
term.
Alternatively, for the Mexican hat potential, the nonlinearity is described by

LN = LMH = µ2|ψ|2 − 2λ|ψ|4. (68)

Both µ2 and λ are positive parameters. This potential, V (ψ) = −µ2|ψ|2 + 2λ|ψ|4, exhibits minima at |ψ| = v =√
µ2/(2λ), representing stable semantic states.
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The Langrangian density L[ψ,ψ∗] defines the dynamics of a 
system in N-dimensional phase. In our context, the ”system” is the 
semantic wave function, the ”initial state” is the initial meaning of 
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is determined by the coupling constant, γ. A positive coupling 
constant (γ > 0) can be interpreted as semantic self-reinforcement, 
where the presence of a particular semantic meaning enhances 
itself. Conversely, a negative coupling constant (γ < 0) represents 
semantic self-inhibition, where the presence of a semantic meaning 
suppresses its own presence. These interpretations allow us to 
relate the parameter γ to the semantic coherence and diversity of 
the LLM.

The second approach to introducing nonlinearity involves the 
Mexican hat potential. This potential, already discussed in 
earlier sections, provides an alternative mechanism for capturing 
nonlinear effects and for the spontaneous symmetry breaking that 
can happen within the LLM.

Based on these considerations, we propose the following 
Lagrangian density for the semantic wave function,

Here, ψ(t,⃗x) represents the semantic wave function, where N is 
the dimension of the embedded space with spatial coordinates 
⃗x. Setting ℏ = 1 and m = 1 implies that we are measuring 
energy and momentum in dimensionless units, which simplifies 
the mathematical treatment but requires careful consideration 

when interpreting the physical meaning of the parameters. The 
Lagrangian LS

 epresents the linear Schr¨odinger equation and 
corresponds to the propagation of a classical free particle, while 
the term LN encompasses the nonlinear components.

For the nonlinear Schr¨odinger equation, the nonlinearity has the 
form

where γ is the coupling constant mentioned prior, and it determines 
the strength of the nonlinear self-interaction term.

Alternatively, for the Mexican hat potential, the nonlinearity is 
described by

 LN = LMH = µ2|ψ|2 − 2λ|ψ|4.	                           (68)

9.2. Introduction of Gauge Field and U(1) Symmetry
To ensure the stability of our model and prevent the arbitrary 
creation or destruction of semantic information, we impose a U(1) 
symmetry. This symmetry guarantees that the total ”semantic 
charge” is conserved. In quantum field theories, U(1) symmetry is 
associated with the conservation of electric charge, and we draw 
an analogy to the conservation of semantic meaning.

i.e.
                                                    
                    
A0 is the scalar potential, and AI is the vector potential. The gauge 
transformations for the fields are

 

                                   

We set g = 1. The gauge-invariant Lagrangian is then
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where γ is the coupling constant mentioned prior, and it determines the strength of the nonlinear self-interaction
term.
Alternatively, for the Mexican hat potential, the nonlinearity is described by
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Both µ2 and λ are positive parameters. This potential, V (ψ) = −µ2|ψ|2 + 2λ|ψ|4, exhibits minima at |ψ| = v =√
µ2/(2λ), representing stable semantic states.
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term.
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µ2/(2λ), representing stable semantic states.
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Based on these considerations, we propose the following Lagrangian density for the semantic wave function,

L = LS + LN =
iℏ
2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− ℏ2

2m

N∑
i=1

∣∣∣∣
∂ψ

∂xi

∣∣∣∣
2

+ LN . (66)

Here, ψ(t, x⃗) represents the semantic wave function, where N is the dimension of the embedded space with spatial
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meaning of the parameters. The Lagrangian LS epresents the linear Schrödinger equation and corresponds to the
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µ2/(2λ), representing stable semantic states.16

B. Introduction of Gauge Field and U(1) Symmetry

To ensure the stability of our model and prevent the arbitrary creation or destruction of semantic information,
we impose a U(1) symmetry. This symmetry guarantees that the total ”semantic charge” is conserved. In quantum
field theories, U(1) symmetry is associated with the conservation of electric charge, and we draw an analogy to the
conservation of semantic meaning.

To implement the U(1) symmetry, we introduce a gauge field, Aµ(t, x⃗), where µ = 0, 1, ..., N . We also use the
notation

xµ µ = 0, 1, .., N with x0 = t, (x1, x2, ..., xN ) = (xi) = x⃗, (69)

i.e.

xµ = (x0, xi) = (t, x⃗), i = 1, 2, ..., N. (70)

A0 is the scalar potential, and Ai is the vector potential. The gauge transformations for the fields are

ψ(xµ) → ψ′(xµ) = eigφ(xµ)ψ(xµ), (71)

ψ∗(xµ) → ψ′∗(xµ) = e−igφ(xµ)ψ∗(xµ), (72)

Aµ(xµ) → A′
µ(xµ) = Aµ(xµ) +

1

g
∂µφ(xµ). (73)

Here, g is the charge associated with the field ψ and φ(xµ) is a gauge parameter. We have also used the notation
∂µ = ∂/∂xµ. We replace the ordinary derivatives with covariant derivatives,

Dµ = ∂µ − igAµ. (74)

We set g = 1. The gauge-invariant Lagrangian is then

L = −1

4
FµνF

µν +
i

2
(ψ∗D0ψ − ψ(D0ψ)

∗)− 1

2
|Diψ|2 + LN , (75)

where

Fµν = ∂µAν − ∂νAµ. (76)

Repeated indices are summed except when otherwise indicated. Expanding the Lagrangian, we get

L = −1

4
FµνF

µν +
i

2
(ψ∗∂0ψ − ψ∂0ψ

∗) +A0|ψ|2 −
1

2
|∂iψ|2 −

1

2
A2

i |ψ|2 −
i

2
Ai(ψ

∗∂iψ − ψ∂iψ
∗) + LN . (77)

This is the Lagrangian describing a wave propagating in a nonlinear semantic space with U(1) symmetry.

C. Gauge Fixing (Coulomb Gauge)

The gauge freedom in the Lagrangian leads to redundant degrees of freedom, which need to be removed to obtain
a well-defined path integral. To do this, we choose the Coulomb gauge,

∂iAi = 0. (78)
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Where

Repeated indices are summed except when otherwise indicated. 
Expanding the Lagrangian, we get
		

This is the Lagrangian describing a wave propagating in a nonlinear 
semantic space with U(1) symmetry.

9.3. Gauge Fixing (Coulomb Gauge)
The gauge freedom in the Lagrangian leads to redundant degrees 
of freedom, which need to be removed to obtain a well-defined 
path integral. To do this, we choose the Coulomb gauge,

 ∂iAi = 0.	                                                      (78)

This choice simplifies calculations and has a physical interpretation 
in our context, as we will discuss later. To implement the Coulomb 
gauge, we use the Faddeev-Popov procedure. We can define 
number ”1”,

	
                                                                                                                                                                             
where ∂i

2 is the Laplacian in N dimensions, δ is a delta function and 
α is some function. Then, we insert this into the path integral. We 
also introduce a Lagrange multiplier field λ to enforce the gauge 
condition. After integrating out the Lagrange multiplier, we have a 
generating functional,

where the action is

The determinant det(−∂i
2) is a number and can be absorbed into the 

path integral.

9.4. Mean-Field Approximation
Directly integrating out the gauge fields Aµ to obtain an effective 
action that depends solely on ψ and ψ∗ poses significant challenges. 
Therefore, we implement the mean-field approximation, a common 
technique to simplify such calculations. This simplification, 
while enabling analytical progress, neglects quantum fluctuations 
and correlations, potentially overlooking subtle but important 
aspects of the semantic dynamics. The validity of the mean-field 
approximation relies on the assumption that fluctuations around the 
mean field are small. This assumption is more likely to hold when 
the system is strongly interacting or when the number of degrees 
of freedom is large. In the context of LLMs, this could correspond 
to situations where the semantic space is highly structured or when 
the LLM has a large number of parameters.

In the mean-field approximation, we decompose the quantum fields 
into their average (classical) values and fluctuations around these 
averages. Now ψ is a complex field and needs some attention, but 
we may express it and the gauge field Aµ as

Here, ψ¯(xµ) and A¯µ(xµ) denote the mean fields, while δψ(xµ) 
and δAµ(xµ) represent the corresponding fluctuations. We invoke 
the assumption that these fluctuations are small in magnitude 
compared to the mean fields, which is a central tenet of the mean-
field approximation. In the context of LLMs, interpreting the mean 
field ψ¯(xµ) as the mean field, it provides how common states 
happen in the embedding space.

Next, we treat the term |ψ|2 as a background ”semantic charge” 
density. Within this approximation, we can solve for the component 
A0 of the gauge field in terms of ψ and ψ∗. Employing the Coulomb 
gauge, the equation of motion for A0 is derived by applying the 
Euler-Lagrange equation. Concretely, we suppose that we’re 
evaluating the amount of this action with respect to a ”ground” 
(classical field) level of activity that measures whether or not 
we’ve hallucinated.

The equation of motion for A0 is then obtained by varying the 
action with respect to A0,

	

from which we get
	

	
Therefore,
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we impose a U(1) symmetry. This symmetry guarantees that the total ”semantic charge” is conserved. In quantum
field theories, U(1) symmetry is associated with the conservation of electric charge, and we draw an analogy to the
conservation of semantic meaning.
To implement the U(1) symmetry, we introduce a gauge field, Aµ(t, x⃗), where µ = 0, 1, ..., N . We also use the

notation

xµ µ = 0, 1, .., N with x0 = t, (x1, x2, ..., xN ) = (xi) = x⃗, (69)

i.e.

xµ = (x0, xi) = (t, x⃗), i = 1, 2, ..., N. (70)

A0 is the scalar potential, and Ai is the vector potential. The gauge transformations for the fields are

ψ(xµ) → ψ′(xµ) = eigφ(xµ)ψ(xµ), (71)

ψ∗(xµ) → ψ′∗(xµ) = e−igφ(xµ)ψ∗(xµ), (72)

Aµ(xµ) → A′
µ(xµ) = Aµ(xµ) +

1

g
∂µφ(xµ). (73)

Here, g is the charge associated with the field ψ and φ(xµ) is a gauge parameter. We have also used the notation
∂µ = ∂/∂xµ. We replace the ordinary derivatives with covariant derivatives,

Dµ = ∂µ − igAµ. (74)

We set g = 1. The gauge-invariant Lagrangian is then

L = −1

4
FµνF

µν +
i

2
(ψ∗D0ψ − ψ(D0ψ)

∗)− 1

2
|Diψ|2 + LN , (75)

where

Fµν = ∂µAν − ∂νAµ. (76)

Repeated indices are summed except when otherwise indicated. Expanding the Lagrangian, we get

L = −1

4
FµνF

µν +
i

2
(ψ∗∂0ψ − ψ∂0ψ

∗) +A0|ψ|2 −
1

2
|∂iψ|2 −

1

2
A2

i |ψ|2 −
i

2
Ai(ψ

∗∂iψ − ψ∂iψ
∗) + LN . (77)

This is the Lagrangian describing a wave propagating in a nonlinear semantic space with U(1) symmetry.

C. Gauge Fixing (Coulomb Gauge)

The gauge freedom in the Lagrangian leads to redundant degrees of freedom, which need to be removed to obtain
a well-defined path integral. To do this, we choose the Coulomb gauge,

∂iAi = 0. (78)
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This choice simplifies calculations and has a physical interpretation in our context, as we will discuss later. To
implement the Coulomb gauge, we use the Faddeev-Popov procedure. We can define number ”1”,

1 =

∫
D[α] det(−∂2

i )δ [∂iAi − α] , (79)

where ∂2
i is the Laplacian in N dimensions, δ is a delta function and α is some function. Then, we insert this into the

path integral. We also introduce a Lagrange multiplier field λ to enforce the gauge condition. After integrating out
the Lagrange multiplier, we have a generating functional,

Z =

∫
D[ψ]D[ψ∗]D[A]δ [∂iAi] exp (iS[ψ,ψ

∗, A]) , (80)

where the action is

S[ψ, ψ∗, A] =

∫
dt

∫
dNx

(
−1

4
FµνF

µν +
i

2
(ψ∗∂0ψ − ψ∂0ψ

∗) +A0|ψ|2 −
1

2
|∂iψ|2

−1

2
A2

i |ψ|2 −
i

2
Ai(ψ

∗∂iψ − ψ∂iψ
∗) + LN

)
.

(81)

The determinant det(−∂2
i ) is a number and can be absorbed into the path integral.

D. Mean-Field Approximation

Directly integrating out the gauge fields Aµ to obtain an effective action that depends solely on ψ and ψ∗ poses
significant challenges. Therefore, we implement the mean-field approximation, a common technique to simplify such
calculations. This simplification, while enabling analytical progress, neglects quantum fluctuations and correlations,
potentially overlooking subtle but important aspects of the semantic dynamics. The validity of the mean-field approx-
imation relies on the assumption that fluctuations around the mean field are small. This assumption is more likely
to hold when the system is strongly interacting or when the number of degrees of freedom is large. In the context
of LLMs, this could correspond to situations where the semantic space is highly structured or when the LLM has a
large number of parameters.

In the mean-field approximation, we decompose the quantum fields into their average (classical) values and fluc-
tuations around these averages. Now ψ is a complex field and needs some attention, but we may express it and the
gauge field Aµ as

ψ(xµ) = ⟨ψ(xµ)⟩+ δψ(xµ) = ψ̄(xµ) + δψ(xµ), (82)

Aµ(xµ) = ⟨Aµ(xµ)⟩+ δAµ(xµ) = Āµ(xµ) + δAµ(xµ). (83)

Here, ψ̄(xµ) and Āµ(xµ) denote the mean fields, while δψ(xµ) and δAµ(xµ) represent the corresponding fluctuations.
We invoke the assumption that these fluctuations are small in magnitude compared to the mean fields, which is a
central tenet of the mean-field approximation. In the context of LLMs, interpreting the mean field ψ̄(xµ) as the mean
field, it provides how common states happen in the embedding space.

Next, we treat the term |ψ|2 as a background ”semantic charge” density. Within this approximation, we can solve
for the component A0 of the gauge field in terms of ψ and ψ∗. Employing the Coulomb gauge, the equation of
motion for A0 is derived by applying the Euler-Lagrange equation. Concretely, we suppose that we’re evaluating the
amount of this action with respect to a ”ground” (classical field) level of activity that measures whether or not we’ve
hallucinated.

The equation of motion for A0 is then obtained by varying the action with respect to A0,

δS

δA0
= 0 =⇒ |ψ(xµ)|2 − ∂2

jA0(xµ) = 0, (84)

from which we get
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path integral. We also introduce a Lagrange multiplier field λ to enforce the gauge condition. After integrating out
the Lagrange multiplier, we have a generating functional,
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The determinant det(−∂2
i ) is a number and can be absorbed into the path integral.

D. Mean-Field Approximation
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from which we get
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N = 3, the Green’s function is given by G(xµ, x
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µ) = −1/(4π|xµ − x′

µ|). For the general case of N dimensions, the
Green’s function is expressed as
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Using these results we get the effective action

Seff =

∫
dt

∫
dNx

[
i

2
(ψ∗∂0ψ − ψ∂0ψ

∗)− 1

2
|∂iψ|2 −

1

2
A2

i |ψ|2 −
i

2
Ai(ψ

∗∂iψ − ψ∂iψ
∗) + LN

]

−1

2

∫
dt

∫
dNx

∫
dNx′G(xµ, x

′
µ)|ψ(xµ)|2|ψ(x′

µ)|2.
(89)

E. Interpretation of Terms

The effective action provides a framework for understanding how semantic meanings interact and evolve within the
LLM embedding space. We can analyze the key terms in the effective action to gain insights into these dynamics.
The gauge fields, particularly the vector potential Ai, play a crucial role in shaping this semantic landscape, acting
as directional forces that guide the flow of semantic information. While the precise nature of these forces remains
speculative, we can explore some concrete examples of how they might manifest within LLMs.
The kinetic energy term, proportional to |∂tψi|2, relates to the smoothness or coherence of semantic meaning. A

smaller gradient implies a more uniform or consistent meaning across the semantic space, while larger gradients may
indicate ambiguity or rapid shifts in meaning. This term is expressed as

i

2
(ψ∗∂0ψ − ψ∂0ψ

∗) . (90)

The term governs the temporal evolution of the semantic wave function. It dictates how the semantic meaning changes
over time, with the rate of change being influenced by the other terms in the Lagrangian.
The gradient term for ψ, given by

−1

2
(∂iψ

∗)(∂iψ), (91)

penalizes rapid changes in the semantic wave function across the semantic space. This term encourages semantic
smoothness and coherence. A large gradient would correspond to abrupt shifts in meaning, which are generally
disfavored in coherent text generation. This term can be related to the concept of ”semantic distance” - the further
apart two points are in the semantic space, the more ”costly” it is to transition between them.
The interaction term between ψ and Ai is
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where                      is the Green’s function for the Laplacian operator 
in N dimensions satisfying the equation

The Green’s function represents the potential at point x'µ due to 
a unit charge at point. For the specific case of N = 3, the Green’s 
function is given by                                                        . For the 
general case of N dimensions, the Green’s function is expressed as

Using these results we get the effective action

9.5. Interpretation of Terms
The effective action provides a framework for understanding how 
semantic meanings interact and evolve within the LLM embedding 
space. We can analyze the key terms in the effective action to gain 
insights into these dynamics. The gauge fields, particularly the 
vector potential Ai, play a crucial role in shaping this semantic 
landscape, acting as directional forces that guide the flow of 
semantic information. While the precise nature of these forces 
remains speculative, we can explore some concrete examples of 
how they might manifest within LLMs.

The kinetic energy term, proportional to |∂tψi|
2, relates to the 

smoothness or coherence of semantic meaning. A smaller gradient 
implies a more uniform or consistent meaning across the semantic 
space, while larger gradients may indicate ambiguity or rapid 
shifts in meaning. This term is expressed as

                                         

The term governs the temporal evolution of the semantic wave 
function. It dictates how the semantic meaning changes over time, 
with the rate of change being influenced by the other terms in the 
Lagrangian. The gradient term for ψ, given by
                                        

penalizes rapid changes in the semantic wave function across the 
semantic space. This term encourages semantic smoothness and 
coherence. A large gradient would correspond to abrupt shifts 
in meaning, which are generally disfavored in coherent text 
generation. This term can be related to the concept of ”semantic 
distance” - the further apart two points are in the semantic space, 
the more ”costly” it is to transition between them.

The interaction term between ψ and Ai is

	

which couples the semantic wave function ψ to the vector potential 
Ai. The semantic current interaction,

where Ji = ψ∗∂iψ − ψ∂iψ
* is the ”semantic current.” This term 

represents the interaction between the vector potential and the 
flow of semantic information. It describes how the gauge field 
influences the movement of semantic meaning within the LLM.

One concrete example of how the vector potential could influence 
this flow is through its analogy to attention mechanisms in 
Transformer networks. Consider the sentence, ”The dog chased 
the ball, but it was too fast.” When processing ”it,” the vector 
potential (represented by the attention weights) would strongly 
connect ”it” to ”ball,” indicating that ”it” refers to the ball. This 
connection guides the flow of semantic information, ensuring that 
the LLM correctly understands the pronoun reference. Without 
this directional influence, the LLM might incorrectly associate 
”it” with ”dog.” In this sense, the attention weights can be seen as 
components of the vector potential, directing the semantic current 
(Ji) towards the relevant parts of the input sequence. The semantic 
density interaction is

A2
iψ

*ψ.	                                                                     (94)

This term is proportional to the ”semantic density” ψ*ψ and 
represents the direct interaction between the vector potential and 
the presence of a semantic concept. It describes how the gauge 
field responds to the presence of semantic meaning. This could 
be related to how the LLM adjusts its internal state based on the 
semantic content of the input.

The kinetic term for Ai,

	

represents the kinetic energy of the vector potential. This term 
governs the dynamics of the gauge field itself. It ensures that the 
gauge field is not static but evolves in response to the semantic 
wave function. The Coulomb interaction term is given by

This term represents the effective, scaled interaction between 
semantic charge densities, mediated by the underlying gauge field. 
The factor of -1/2 reflects the dynamics of this mediating field. 
The term |ψ(xµ)|

2 can be interpreted as the semantic charge density 
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The term governs the temporal evolution of the semantic wave function. It dictates how the semantic meaning changes
over time, with the rate of change being influenced by the other terms in the Lagrangian.
The gradient term for ψ, given by
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penalizes rapid changes in the semantic wave function across the semantic space. This term encourages semantic
smoothness and coherence. A large gradient would correspond to abrupt shifts in meaning, which are generally
disfavored in coherent text generation. This term can be related to the concept of ”semantic distance” - the further
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which couples the semantic wave function ψ to the vector potential Ai. The semantic current interaction,
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where Ji = ψ∗∂iψ−ψ∂iψ
∗ is the ”semantic current.” This term represents the interaction between the vector potential

and the flow of semantic information. It describes how the gauge field influences the movement of semantic meaning
within the LLM.
One concrete example of how the vector potential could influence this flow is through its analogy to attention

mechanisms in Transformer networks. Consider the sentence, ”The dog chased the ball, but it was too fast.” When
processing ”it,” the vector potential (represented by the attention weights) would strongly connect ”it” to ”ball,”
indicating that ”it” refers to the ball. This connection guides the flow of semantic information, ensuring that the
LLM correctly understands the pronoun reference. Without this directional influence, the LLM might incorrectly
associate ”it” with ”dog.” In this sense, the attention weights can be seen as components of the vector potential,
directing the semantic current (Ji) towards the relevant parts of the input sequence.

The semantic density interaction is

A2
iψ

∗ψ. (94)

This term is proportional to the ”semantic density” ψ∗ψ and represents the direct interaction between the vector
potential and the presence of a semantic concept. It describes how the gauge field responds to the presence of
semantic meaning. This could be related to how the LLM adjusts its internal state based on the semantic content of
the input.
The kinetic term for Ai,
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4
(∂iAj − ∂jAi)(∂iAj − ∂jAi), (95)

represents the kinetic energy of the vector potential. This term governs the dynamics of the gauge field itself. It
ensures that the gauge field is not static but evolves in response to the semantic wave function.
The Coulomb interaction term is given by
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This term represents the effective, scaled interaction between semantic charge densities, mediated by the underlying
gauge field. The factor of -1/2 reflects the dynamics of this mediating field. The term |ψ(xµ)|2 can be interpreted as
the semantic charge density at point xµ in the semantic space, with higher values indicating a stronger presence of
that particular meaning at that location. The distance |xµ − x′

µ| represents the semantic distance between points xµ

and x′
µ in the semantic space, with smaller distances implying a closer semantic relationship. This term suggests that

words or phrases with similar semantic charges and located close to each other in the semantic space will experience
an attractive or repulsive force, depending on the sign of G(xµ, x

′
µ). The -1/2 factor scales the magnitude of this

interaction. This long-range interaction could be related to the ability of LLMs to capture dependencies between
distant parts of a text, although the strength of these dependencies is now scaled down. The Green’s function
G(xµ, x

′
µ) determines the strength and form of this interaction.

In summary, the effective action provides a rich framework for understanding the dynamics of semantic meaning in
LLMs. Each term in the action corresponds to a specific aspect of semantic interaction and evolution. By analyzing
these terms, we can gain insights into how LLMs process and generate language. It is important to emphasize that
these interpretations are speculative, and further research is needed to validate these connections. However, they
provide concrete examples of how the vector potential could play a role in guiding the flow of semantic information
within LLMs.
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at point xµ in the semantic space, with higher values indicating 
a stronger presence of that particular meaning at that location. 
The distance | xµ - x'µ | represents the semantic distance between 
points xµ and x'µ in the semantic space, with smaller distances 
implying a closer semantic relationship. This term suggests that 
words or phrases with similar semantic charges and located close 
to each other in the semantic space will experience an attractive 
or repulsive force, depending on the sign of G(xµ , x'µ). The -1/2 
factor scales the magnitude of this interaction. This long-range 
interaction could be related to the ability of LLMs to capture 
dependencies between distant parts of a text, although the strength 
of these dependencies is now scaled down. The Green’s function 
G(xµ , x'µ) determines the strength and form of this interaction.

In summary, the effective action provides a rich framework for 
understanding the dynamics of semantic meaning in LLMs. Each 
term in the action corresponds to a specific aspect of semantic 
interaction and evolution. By analyzing these terms, we can gain 
insights into how LLMs process and generate language. It is 
important to emphasize that these interpretations are speculative, 
and further research is needed to validate these connections. 
However, they provide concrete examples of how the vector 
potential could play a role in guiding the flow of semantic 
information within LLMs.

9.6. Understanding the Cubic Nonlinearity
The cubic nonlinearity in the nonlinear Schr¨odinger equation 
(NLSE) introduces a term that depends on the intensity of the 
wave function, |ψ|2. This implies that the wave function interacts 
with itself, and the strength and nature of this interaction are 
determined by the coupling constant γ. The sign and magnitude 
of γ significantly influence the behavior of the semantic wave 
function and can be interpreted in several ways.

If γ > 0, the nonlinearity represents semantic self-reinforcement. 
In this scenario, the presence of a particular semantic meaning 
reinforces itself, and the stronger the initial presence of a 
meaning, the more it tends to amplify itself. This could be 
analogous to priming, where a concept already activated in the 
LLM’s representation becomes easier to activate further. It might 
also relate to confirmation bias, where the LLM tends to favor 
interpretations consistent with its prior beliefs or knowledge, or to 
semantic coherence, where the LLM tries to maintain a consistent 
semantic representation. Mathematically, this would lead to a self-
focusing effect, where the wave function tends to concentrate in 
regions where it is already strong.

Conversely, if γ < 0, the nonlinearity represents semantic self-
inhibition. In this case, the presence of a particular semantic 
meaning inhibits itself, and the stronger the initial presence of 
a meaning, the more it tends to suppress itself. This could be 
analogous to attention mechanisms, where the LLM focuses its 
attention on the most relevant concepts and suppresses irrelevant 
ones, or to inhibition of return, where the LLM avoids repeating 
the same concepts or ideas too frequently. It could also relate 
to semantic diversity, where the LLM tries to explore different 

aspects of a topic and avoid getting stuck in a narrow focus. 
Mathematically, this would lead to a self-defocusing effect, where 
the wave function tends to spread out and avoid concentrating in 
any one region.

It is also possible that the sign and magnitude of γ depend on 
the context. In some contexts, a concept might reinforce itself (γ 
> 0), while in other contexts, it might inhibit itself (γ < 0). This 
context-dependent semantic interaction could be analogous to 
polysemy, where the same word can have different meanings in 
different contexts, or to irony and sarcasm, where the intended 
meaning of a statement can be the opposite of its literal meaning. 
It could also relate to topic shifts, where the LLM can change 
its focus depending on the conversation or the task. Modeling 
this would require a more complex model where γ is a function 
of the input prompt or the internal state of the LLM. The cubic 
nonlinearity affects the interaction between different semantic 
components, represented by different wave functions. To model 
this, one would need to consider a system of coupled NLSEs, 
one for each semantic component. The nonlinearity would then 
involve terms like |ψi|

2ψj, which represent the influence of the i-th 
component on the j-th component. This could be analogous to 
semantic networks, where concepts are connected to each other 
in a network, and the activation of one concept can influence the 
activation of other concepts, or to argument structure, where the 
meaning of a sentence depends on the relationships between its 
different parts. This would lead to a much more complex model, 
but it could capture more nuanced semantic interactions.

In summary, the cubic nonlinearity in the NLSE model offers a way 
to capture interactions within the semantic space of LLMs. The 
specific interpretation of this nonlinearity, and particularly the sign 
and magnitude of the coupling constant γ, depends on the specific 
semantic phenomena being modeled. Further research is needed to 
determine the most appropriate interpretation and to develop more 
sophisticated models that can capture the complexities of semantic 
meaning and interaction.

9.7. Spontaneous Symmetry Breaking and Semantic Bias
The key difference in Mexican hat potential to the cubic 
nonlinearity is that the Mexican hat potential provides a mechanism 
for spontaneous symmetry breaking. The semantic field ψ will 
tend to settle into one of the minima of the potential, breaking the 
symmetry of the Lagrangian. This could be interpreted as the LLM 
”choosing” a particular interpretation or perspective, even in the 
absence of specific input.

The interplay between the kinetic energy term, the Mexican hat 
potential, and the Coulomb interaction could lead to the emergence 
of complex semantic structures in the LLM embedding space. 
The Mexican hat potential provides a stable foundation for these 
structures, while the Coulomb interaction allows for long-range 
interactions between different semantic concepts.The spontaneous 
symmetry breaking inherent in the Mexican hat potential has 
profound implications for the interpretation of LLMs. The choice 
of a particular vacuum state v = |v|exp(iθ) represents a fundamental 
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bias in the LLM’s semantic representation. 

The magnitude |v| = pµ
2/(2λ) determines the overall strength of 

this bias, while the phase θ determines the specific direction of 
the bias in the complex semantic space.This bias could manifest in 
various ways, such as a preference for certain types of information, 
a tendency to adopt certain viewpoints, or a predisposition to 
generate certain types of text. It is important to note that this 
bias is not necessarily a negative thing. It could be a reflection 
of the LLM’s training data or its intended purpose.  However, 
it is important to be aware of this bias and to understand how it 
might influence the LLM’s behavior. Furthermore, the fluctuations 
around the vacuum state can be interpreted as the specific semantic 
content of the LLM’s output. These fluctuations are influenced by 
the input prompt, the LLM’s internal state, and the interactions 
between different semantic concepts.

In summary, the path integral formulation with the Mexican 
hat potential provides a powerful framework for understanding 
the dynamics of semantic meaning in LLMs. The spontaneous 
symmetry breaking inherent in this model leads to the emergence 
of a fundamental semantic bias, which influences the LLM’s 
behavior and shapes its output.
	
9.8. Detailed Calculation of Effective Action with Integrated 
Out Ai
This section provides a detailed calculation of the effective action 
obtained by integrating out the vector potential Ai to quadratic 
order, under the weak coupling approximation and in the Coulomb 
gauge. The weak coupling approximation assumes that the 
interaction between the semantic wave function and the gauge 
field is small, which may not always be valid in LLMs.

We begin with the action that includes the vector potential Ai,
	

The first term involves the field strength tensor Fij = ∂iAj − ∂jAi. We 
integrate this term by parts,

	

We then apply the Coulomb gauge condition, ∂iAi = 0, which 
eliminates the second term,

	

where ∂i
2 is the Laplacian. Substituting this back into the action, 

we get

We rewrite the action in a form suitable for Gaussian integration,

Now we can identify the kernel Kij(xµ,yµ) and the source Ji(xµ),

The path integral over Ai is now a Gaussian integral. The general 
formula for a Gaussian integral is

Applying this formula to our action, we get

This means that the effective action, after integrating out Ai, is

where S0 is the action for the ψ field without the Ai field. The inverse 
of the kernel, Kij−1(xµ,yµ), is called the propagator. It satisfies the 
following equation

Substituting the expression for Kij(xµ,yµ), we get
	

This simplifies to	
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Furthermore, the fluctuations around the vacuum state can be interpreted as the specific semantic content of the
LLM’s output. These fluctuations are influenced by the input prompt, the LLM’s internal state, and the interactions
between different semantic concepts.
In summary, the path integral formulation with the Mexican hat potential provides a powerful framework for

understanding the dynamics of semantic meaning in LLMs. The spontaneous symmetry breaking inherent in this
model leads to the emergence of a fundamental semantic bias, which influences the LLM’s behavior and shapes its
output.

H. Detailed Calculation of Effective Action with Integrated Out Ai

This section provides a detailed calculation of the effective action obtained by integrating out the vector potential
Ai to quadratic order, under the weak coupling approximation and in the Coulomb gauge. The weak coupling
approximation assumes that the interaction between the semantic wave function and the gauge field is small, which
may not always be valid in LLMs.
We begin with the action that includes the vector potential Ai,

S[A] =

∫
dt

∫
dNx

{
−1

4
(∂iAj − ∂jAi)

2 − 1

2
A2

iψ
∗ψ +

1

2i
Ai(ψ

∗∂iψ − ψ∂iψ
∗)

}
. (97)

The first term involves the field strength tensor Fij = ∂iAj − ∂jAi. We integrate this term by parts,
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We then apply the Coulomb gauge condition, ∂iAi = 0, which eliminates the second term,
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where ∂2
i is the Laplacian. Substituting this back into the action, we get
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We rewrite the action in a form suitable for Gaussian integration,

S[A] =
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j − ψ∗ψ)Ai +
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Now we can identify the kernel Kij(xµ, yµ) and the source Ji(xµ),

Kij(xµ, yµ) = (−∂2
j − ψ∗(xµ)ψ(xµ))δijδ

N (xµ − yµ), (102)

Ji(xµ) =
1

i
(ψ∗(xµ)∂iψ(xµ)− ψ(xµ)∂iψ

∗(xµ)). (103)

The path integral over Ai is now a Gaussian integral. The general formula for a Gaussian integral is

∫
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dxJ(x)A(x)
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= constant× exp

{
− i
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(104)
Applying this formula to our action, we get

∫
DA exp {iS[A]} ∝ exp

{
− i
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∫
dt
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. (105)
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The first term involves the field strength tensor Fij = ∂iAj − ∂jAi. We integrate this term by parts,
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between different semantic concepts.
In summary, the path integral formulation with the Mexican hat potential provides a powerful framework for

understanding the dynamics of semantic meaning in LLMs. The spontaneous symmetry breaking inherent in this
model leads to the emergence of a fundamental semantic bias, which influences the LLM’s behavior and shapes its
output.

H. Detailed Calculation of Effective Action with Integrated Out Ai

This section provides a detailed calculation of the effective action obtained by integrating out the vector potential
Ai to quadratic order, under the weak coupling approximation and in the Coulomb gauge. The weak coupling
approximation assumes that the interaction between the semantic wave function and the gauge field is small, which
may not always be valid in LLMs.
We begin with the action that includes the vector potential Ai,
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The first term involves the field strength tensor Fij = ∂iAj − ∂jAi. We integrate this term by parts,
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where ∂2
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LLM’s output. These fluctuations are influenced by the input prompt, the LLM’s internal state, and the interactions
between different semantic concepts.
In summary, the path integral formulation with the Mexican hat potential provides a powerful framework for

understanding the dynamics of semantic meaning in LLMs. The spontaneous symmetry breaking inherent in this
model leads to the emergence of a fundamental semantic bias, which influences the LLM’s behavior and shapes its
output.

H. Detailed Calculation of Effective Action with Integrated Out Ai

This section provides a detailed calculation of the effective action obtained by integrating out the vector potential
Ai to quadratic order, under the weak coupling approximation and in the Coulomb gauge. The weak coupling
approximation assumes that the interaction between the semantic wave function and the gauge field is small, which
may not always be valid in LLMs.
We begin with the action that includes the vector potential Ai,
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∫
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(∂iAj − ∂jAi)

2 − 1

2
A2

iψ
∗ψ +
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The first term involves the field strength tensor Fij = ∂iAj − ∂jAi. We integrate this term by parts,
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where ∂2
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LLM’s output. These fluctuations are influenced by the input prompt, the LLM’s internal state, and the interactions
between different semantic concepts.
In summary, the path integral formulation with the Mexican hat potential provides a powerful framework for

understanding the dynamics of semantic meaning in LLMs. The spontaneous symmetry breaking inherent in this
model leads to the emergence of a fundamental semantic bias, which influences the LLM’s behavior and shapes its
output.

H. Detailed Calculation of Effective Action with Integrated Out Ai

This section provides a detailed calculation of the effective action obtained by integrating out the vector potential
Ai to quadratic order, under the weak coupling approximation and in the Coulomb gauge. The weak coupling
approximation assumes that the interaction between the semantic wave function and the gauge field is small, which
may not always be valid in LLMs.
We begin with the action that includes the vector potential Ai,

S[A] =

∫
dt

∫
dNx

{
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2 − 1

2
A2

iψ
∗ψ +
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The first term involves the field strength tensor Fij = ∂iAj − ∂jAi. We integrate this term by parts,
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∫
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We then apply the Coulomb gauge condition, ∂iAi = 0, which eliminates the second term,
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∫
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where ∂2
i is the Laplacian. Substituting this back into the action, we get
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Furthermore, the fluctuations around the vacuum state can be interpreted as the specific semantic content of the
LLM’s output. These fluctuations are influenced by the input prompt, the LLM’s internal state, and the interactions
between different semantic concepts.
In summary, the path integral formulation with the Mexican hat potential provides a powerful framework for

understanding the dynamics of semantic meaning in LLMs. The spontaneous symmetry breaking inherent in this
model leads to the emergence of a fundamental semantic bias, which influences the LLM’s behavior and shapes its
output.

H. Detailed Calculation of Effective Action with Integrated Out Ai

This section provides a detailed calculation of the effective action obtained by integrating out the vector potential
Ai to quadratic order, under the weak coupling approximation and in the Coulomb gauge. The weak coupling
approximation assumes that the interaction between the semantic wave function and the gauge field is small, which
may not always be valid in LLMs.
We begin with the action that includes the vector potential Ai,

S[A] =

∫
dt

∫
dNx

{
−1

4
(∂iAj − ∂jAi)
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∗ψ +
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Ai(ψ
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The first term involves the field strength tensor Fij = ∂iAj − ∂jAi. We integrate this term by parts,
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∫
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i Aj + ∂i∂jAi). (98)

We then apply the Coulomb gauge condition, ∂iAi = 0, which eliminates the second term,
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∫
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where ∂2
i is the Laplacian. Substituting this back into the action, we get
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We rewrite the action in a form suitable for Gaussian integration,

S[A] =
1

2

∫
dt

∫
dNx

{
Ai(−∂2

j − ψ∗ψ)Ai +
1

i
Ai(ψ

∗∂iψ − ψ∂iψ
∗)

}
. (101)

Now we can identify the kernel Kij(xµ, yµ) and the source Ji(xµ),
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Furthermore, the fluctuations around the vacuum state can be interpreted as the specific semantic content of the
LLM’s output. These fluctuations are influenced by the input prompt, the LLM’s internal state, and the interactions
between different semantic concepts.
In summary, the path integral formulation with the Mexican hat potential provides a powerful framework for

understanding the dynamics of semantic meaning in LLMs. The spontaneous symmetry breaking inherent in this
model leads to the emergence of a fundamental semantic bias, which influences the LLM’s behavior and shapes its
output.

H. Detailed Calculation of Effective Action with Integrated Out Ai

This section provides a detailed calculation of the effective action obtained by integrating out the vector potential
Ai to quadratic order, under the weak coupling approximation and in the Coulomb gauge. The weak coupling
approximation assumes that the interaction between the semantic wave function and the gauge field is small, which
may not always be valid in LLMs.
We begin with the action that includes the vector potential Ai,

S[A] =

∫
dt

∫
dNx

{
−1

4
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The first term involves the field strength tensor Fij = ∂iAj − ∂jAi. We integrate this term by parts,
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where ∂2
i is the Laplacian. Substituting this back into the action, we get
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Furthermore, the fluctuations around the vacuum state can be interpreted as the specific semantic content of the
LLM’s output. These fluctuations are influenced by the input prompt, the LLM’s internal state, and the interactions
between different semantic concepts.
In summary, the path integral formulation with the Mexican hat potential provides a powerful framework for

understanding the dynamics of semantic meaning in LLMs. The spontaneous symmetry breaking inherent in this
model leads to the emergence of a fundamental semantic bias, which influences the LLM’s behavior and shapes its
output.

H. Detailed Calculation of Effective Action with Integrated Out Ai

This section provides a detailed calculation of the effective action obtained by integrating out the vector potential
Ai to quadratic order, under the weak coupling approximation and in the Coulomb gauge. The weak coupling
approximation assumes that the interaction between the semantic wave function and the gauge field is small, which
may not always be valid in LLMs.
We begin with the action that includes the vector potential Ai,

S[A] =

∫
dt

∫
dNx
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The first term involves the field strength tensor Fij = ∂iAj − ∂jAi. We integrate this term by parts,
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where ∂2
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between different semantic concepts.
In summary, the path integral formulation with the Mexican hat potential provides a powerful framework for

understanding the dynamics of semantic meaning in LLMs. The spontaneous symmetry breaking inherent in this
model leads to the emergence of a fundamental semantic bias, which influences the LLM’s behavior and shapes its
output.

H. Detailed Calculation of Effective Action with Integrated Out Ai

This section provides a detailed calculation of the effective action obtained by integrating out the vector potential
Ai to quadratic order, under the weak coupling approximation and in the Coulomb gauge. The weak coupling
approximation assumes that the interaction between the semantic wave function and the gauge field is small, which
may not always be valid in LLMs.
We begin with the action that includes the vector potential Ai,
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The first term involves the field strength tensor Fij = ∂iAj − ∂jAi. We integrate this term by parts,
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where ∂2
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Furthermore, the fluctuations around the vacuum state can be interpreted as the specific semantic content of the
LLM’s output. These fluctuations are influenced by the input prompt, the LLM’s internal state, and the interactions
between different semantic concepts.
In summary, the path integral formulation with the Mexican hat potential provides a powerful framework for

understanding the dynamics of semantic meaning in LLMs. The spontaneous symmetry breaking inherent in this
model leads to the emergence of a fundamental semantic bias, which influences the LLM’s behavior and shapes its
output.

H. Detailed Calculation of Effective Action with Integrated Out Ai

This section provides a detailed calculation of the effective action obtained by integrating out the vector potential
Ai to quadratic order, under the weak coupling approximation and in the Coulomb gauge. The weak coupling
approximation assumes that the interaction between the semantic wave function and the gauge field is small, which
may not always be valid in LLMs.
We begin with the action that includes the vector potential Ai,
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The first term involves the field strength tensor Fij = ∂iAj − ∂jAi. We integrate this term by parts,
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Furthermore, the fluctuations around the vacuum state can be interpreted as the specific semantic content of the
LLM’s output. These fluctuations are influenced by the input prompt, the LLM’s internal state, and the interactions
between different semantic concepts.
In summary, the path integral formulation with the Mexican hat potential provides a powerful framework for

understanding the dynamics of semantic meaning in LLMs. The spontaneous symmetry breaking inherent in this
model leads to the emergence of a fundamental semantic bias, which influences the LLM’s behavior and shapes its
output.

H. Detailed Calculation of Effective Action with Integrated Out Ai

This section provides a detailed calculation of the effective action obtained by integrating out the vector potential
Ai to quadratic order, under the weak coupling approximation and in the Coulomb gauge. The weak coupling
approximation assumes that the interaction between the semantic wave function and the gauge field is small, which
may not always be valid in LLMs.
We begin with the action that includes the vector potential Ai,

S[A] =

∫
dt

∫
dNx

{
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(∂iAj − ∂jAi)
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∗ψ +
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The first term involves the field strength tensor Fij = ∂iAj − ∂jAi. We integrate this term by parts,
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∫
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We then apply the Coulomb gauge condition, ∂iAi = 0, which eliminates the second term,
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∫
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where ∂2
i is the Laplacian. Substituting this back into the action, we get
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Furthermore, the fluctuations around the vacuum state can be interpreted as the specific semantic content of the
LLM’s output. These fluctuations are influenced by the input prompt, the LLM’s internal state, and the interactions
between different semantic concepts.
In summary, the path integral formulation with the Mexican hat potential provides a powerful framework for

understanding the dynamics of semantic meaning in LLMs. The spontaneous symmetry breaking inherent in this
model leads to the emergence of a fundamental semantic bias, which influences the LLM’s behavior and shapes its
output.

H. Detailed Calculation of Effective Action with Integrated Out Ai

This section provides a detailed calculation of the effective action obtained by integrating out the vector potential
Ai to quadratic order, under the weak coupling approximation and in the Coulomb gauge. The weak coupling
approximation assumes that the interaction between the semantic wave function and the gauge field is small, which
may not always be valid in LLMs.
We begin with the action that includes the vector potential Ai,

S[A] =

∫
dt

∫
dNx

{
−1

4
(∂iAj − ∂jAi)

2 − 1

2
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iψ
∗ψ +

1
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Ai(ψ
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}
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The first term involves the field strength tensor Fij = ∂iAj − ∂jAi. We integrate this term by parts,
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1
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∫
dt

∫
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We then apply the Coulomb gauge condition, ∂iAi = 0, which eliminates the second term,
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∫
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1
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dt

∫
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where ∂2
i is the Laplacian. Substituting this back into the action, we get
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∫
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Furthermore, the fluctuations around the vacuum state can be interpreted as the specific semantic content of the
LLM’s output. These fluctuations are influenced by the input prompt, the LLM’s internal state, and the interactions
between different semantic concepts.
In summary, the path integral formulation with the Mexican hat potential provides a powerful framework for

understanding the dynamics of semantic meaning in LLMs. The spontaneous symmetry breaking inherent in this
model leads to the emergence of a fundamental semantic bias, which influences the LLM’s behavior and shapes its
output.

H. Detailed Calculation of Effective Action with Integrated Out Ai

This section provides a detailed calculation of the effective action obtained by integrating out the vector potential
Ai to quadratic order, under the weak coupling approximation and in the Coulomb gauge. The weak coupling
approximation assumes that the interaction between the semantic wave function and the gauge field is small, which
may not always be valid in LLMs.
We begin with the action that includes the vector potential Ai,

S[A] =

∫
dt

∫
dNx

{
−1

4
(∂iAj − ∂jAi)

2 − 1

2
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iψ
∗ψ +

1

2i
Ai(ψ

∗∂iψ − ψ∂iψ
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}
. (97)

The first term involves the field strength tensor Fij = ∂iAj − ∂jAi. We integrate this term by parts,
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∫
dNx(∂iAj − ∂jAi)

2 =
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∫
dt

∫
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We then apply the Coulomb gauge condition, ∂iAi = 0, which eliminates the second term,
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∫
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∫
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where ∂2
i is the Laplacian. Substituting this back into the action, we get
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∫
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Now we can identify the kernel Kij(xµ, yµ) and the source Ji(xµ),
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Furthermore, the fluctuations around the vacuum state can be interpreted as the specific semantic content of the
LLM’s output. These fluctuations are influenced by the input prompt, the LLM’s internal state, and the interactions
between different semantic concepts.
In summary, the path integral formulation with the Mexican hat potential provides a powerful framework for

understanding the dynamics of semantic meaning in LLMs. The spontaneous symmetry breaking inherent in this
model leads to the emergence of a fundamental semantic bias, which influences the LLM’s behavior and shapes its
output.

H. Detailed Calculation of Effective Action with Integrated Out Ai

This section provides a detailed calculation of the effective action obtained by integrating out the vector potential
Ai to quadratic order, under the weak coupling approximation and in the Coulomb gauge. The weak coupling
approximation assumes that the interaction between the semantic wave function and the gauge field is small, which
may not always be valid in LLMs.
We begin with the action that includes the vector potential Ai,

S[A] =

∫
dt

∫
dNx

{
−1

4
(∂iAj − ∂jAi)

2 − 1

2
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∗ψ +

1
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Ai(ψ
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The first term involves the field strength tensor Fij = ∂iAj − ∂jAi. We integrate this term by parts,
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∫
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∫
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We then apply the Coulomb gauge condition, ∂iAi = 0, which eliminates the second term,
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∫
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where ∂2
i is the Laplacian. Substituting this back into the action, we get
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∫
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Now we can identify the kernel Kij(xµ, yµ) and the source Ji(xµ),
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(ψ∗(xµ)∂iψ(xµ)− ψ(xµ)∂iψ

∗(xµ)). (103)
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Furthermore, the fluctuations around the vacuum state can be interpreted as the specific semantic content of the
LLM’s output. These fluctuations are influenced by the input prompt, the LLM’s internal state, and the interactions
between different semantic concepts.
In summary, the path integral formulation with the Mexican hat potential provides a powerful framework for

understanding the dynamics of semantic meaning in LLMs. The spontaneous symmetry breaking inherent in this
model leads to the emergence of a fundamental semantic bias, which influences the LLM’s behavior and shapes its
output.

H. Detailed Calculation of Effective Action with Integrated Out Ai

This section provides a detailed calculation of the effective action obtained by integrating out the vector potential
Ai to quadratic order, under the weak coupling approximation and in the Coulomb gauge. The weak coupling
approximation assumes that the interaction between the semantic wave function and the gauge field is small, which
may not always be valid in LLMs.
We begin with the action that includes the vector potential Ai,

S[A] =

∫
dt

∫
dNx

{
−1

4
(∂iAj − ∂jAi)

2 − 1

2
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iψ
∗ψ +

1
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Ai(ψ
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The first term involves the field strength tensor Fij = ∂iAj − ∂jAi. We integrate this term by parts,
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dt

∫
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We then apply the Coulomb gauge condition, ∂iAi = 0, which eliminates the second term,
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where ∂2
i is the Laplacian. Substituting this back into the action, we get
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∫
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We rewrite the action in a form suitable for Gaussian integration,
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Furthermore, the fluctuations around the vacuum state can be interpreted as the specific semantic content of the
LLM’s output. These fluctuations are influenced by the input prompt, the LLM’s internal state, and the interactions
between different semantic concepts.
In summary, the path integral formulation with the Mexican hat potential provides a powerful framework for

understanding the dynamics of semantic meaning in LLMs. The spontaneous symmetry breaking inherent in this
model leads to the emergence of a fundamental semantic bias, which influences the LLM’s behavior and shapes its
output.

H. Detailed Calculation of Effective Action with Integrated Out Ai

This section provides a detailed calculation of the effective action obtained by integrating out the vector potential
Ai to quadratic order, under the weak coupling approximation and in the Coulomb gauge. The weak coupling
approximation assumes that the interaction between the semantic wave function and the gauge field is small, which
may not always be valid in LLMs.
We begin with the action that includes the vector potential Ai,
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∫
dt

∫
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{
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The first term involves the field strength tensor Fij = ∂iAj − ∂jAi. We integrate this term by parts,

−1

4

∫
dt

∫
dNx(∂iAj − ∂jAi)

2 =
1

2

∫
dt

∫
dNxAj(−∂2

i Aj + ∂i∂jAi). (98)

We then apply the Coulomb gauge condition, ∂iAi = 0, which eliminates the second term,
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where ∂2
i is the Laplacian. Substituting this back into the action, we get
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Furthermore, the fluctuations around the vacuum state can be interpreted as the specific semantic content of the
LLM’s output. These fluctuations are influenced by the input prompt, the LLM’s internal state, and the interactions
between different semantic concepts.
In summary, the path integral formulation with the Mexican hat potential provides a powerful framework for

understanding the dynamics of semantic meaning in LLMs. The spontaneous symmetry breaking inherent in this
model leads to the emergence of a fundamental semantic bias, which influences the LLM’s behavior and shapes its
output.

H. Detailed Calculation of Effective Action with Integrated Out Ai

This section provides a detailed calculation of the effective action obtained by integrating out the vector potential
Ai to quadratic order, under the weak coupling approximation and in the Coulomb gauge. The weak coupling
approximation assumes that the interaction between the semantic wave function and the gauge field is small, which
may not always be valid in LLMs.
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}
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The first term involves the field strength tensor Fij = ∂iAj − ∂jAi. We integrate this term by parts,
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We then apply the Coulomb gauge condition, ∂iAi = 0, which eliminates the second term,
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where ∂2
i is the Laplacian. Substituting this back into the action, we get
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We rewrite the action in a form suitable for Gaussian integration,
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Now we can identify the kernel Kij(xµ, yµ) and the source Ji(xµ),
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Now we can identify the kernel Kij(xµ, yµ) and the source Ji(xµ),
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j − ψ∗(xµ)ψ(xµ))δijδ

N (xµ − yµ), (102)

Ji(xµ) =
1

i
(ψ∗(xµ)∂iψ(xµ)− ψ(xµ)∂iψ

∗(xµ)). (103)

The path integral over Ai is now a Gaussian integral. The general formula for a Gaussian integral is

∫
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{
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∫
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Applying this formula to our action, we get
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This means that the effective action, after integrating out Ai, is

Seff = S0 −
1

2

∫
dt

∫
dNxdNyJi(xµ)K

−1
ij (xµ, yµ)Jj(yµ) + SN , (106)

where S0 is the action for the ψ field without the Ai field. The inverse of the kernel, K−1
ij (xµ, yµ), is called the

propagator. It satisfies the following equation

∫
dt

∫
dNzKik(xµ, zµ)K

−1
kj (zµ, yµ) = δijδ

N (xµ − yµ). (107)

Substituting the expression for Kij(xµ, yµ), we get

∫
dt

∫
dNz(−∂2

j − ψ∗(xµ)ψ(xµ))δikδ
N (xµ − zµ)K

−1
kj (zµ, yµ) = δijδ

N (xµ − yµ). (108)

This simplifies to

(−∂2
j − ψ∗(xµ)ψ(xµ))K

−1
ij (xµ, yµ) = δijδ

N (xµ − yµ). (109)

To make progress, we make the weak coupling approximation. This means that we assume that the interaction
between the ψ field and the Ai field is weak. This allows us to neglect the ψ∗(xµ)ψ(xµ) term in the equation for the
propagator. The validity of this approximation depends on the specific values of the parameters in the Lagrangian
and the properties of the semantic wave function. In LLMs, this approximation might be reasonable if the semantic
charge density is relatively low or if the gauge coupling is weak.
The inverse Kernel satisfies the following equation

(−∂2
j )K

−1
ij (xµ, yµ) = δijδ

N (xµ − yµ). (110)

The solution to the simplified equation is

K−1
ij (xµ, yµ) = δijG(xµ, yµ), (111)

where G(xµ, yµ) is the Green’s function for the Laplacian in N dimensions. The Green’s function satisfies the equation

(−∂2
j )G(xµ, yµ) = δN (xµ − yµ). (112)

The solution for G(xµ, x
′
µ) is N-dependent:

G(xµ, x
′
µ) = − Γ (N/2)

2(N − 2)πN/2|xµ − x′
µ|N−2

(N ̸= 2). (113)

The Green’s function represents the influence of a semantic ”charge” at point yµ on the potential at point xµ. It
effectively describes how semantic information propagates through the semantic space. Substituting the expression
for the propagator into the effective action, we get

Seff = S0 −
1

2

∫
dt

∫
dNxdNyJi(xµ)G(xµ, yµ)Ji(yµ) + SN . (114)

The effective Lagrangian is then

Leff =
i

2
(ψ∗∂0ψ − ψ∂0ψ

∗)− 1

2

∑
(∂iψ

∗)(∂iψ)

− 1

2

∫
dNy (ψ∗(xµ)∂iψ(xµ)− ψ(xµ)∂iψ

∗(xµ))G(xµ, yµ) (ψ
∗(yµ)∂iψ(yµ)− ψ(yµ)∂iψ

∗(yµ)) + LN .
(115)
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The effective Lagrangian is then

Leff =
i

2
(ψ∗∂0ψ − ψ∂0ψ

∗)− 1

2

∑
(∂iψ

∗)(∂iψ)

− 1

2

∫
dNy (ψ∗(xµ)∂iψ(xµ)− ψ(xµ)∂iψ

∗(xµ))G(xµ, yµ) (ψ
∗(yµ)∂iψ(yµ)− ψ(yµ)∂iψ

∗(yµ)) + LN .
(115)
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This means that the effective action, after integrating out Ai, is

Seff = S0 −
1

2

∫
dt

∫
dNxdNyJi(xµ)K

−1
ij (xµ, yµ)Jj(yµ) + SN , (106)

where S0 is the action for the ψ field without the Ai field. The inverse of the kernel, K−1
ij (xµ, yµ), is called the

propagator. It satisfies the following equation

∫
dt

∫
dNzKik(xµ, zµ)K

−1
kj (zµ, yµ) = δijδ

N (xµ − yµ). (107)

Substituting the expression for Kij(xµ, yµ), we get

∫
dt

∫
dNz(−∂2

j − ψ∗(xµ)ψ(xµ))δikδ
N (xµ − zµ)K

−1
kj (zµ, yµ) = δijδ

N (xµ − yµ). (108)

This simplifies to

(−∂2
j − ψ∗(xµ)ψ(xµ))K

−1
ij (xµ, yµ) = δijδ

N (xµ − yµ). (109)

To make progress, we make the weak coupling approximation. This means that we assume that the interaction
between the ψ field and the Ai field is weak. This allows us to neglect the ψ∗(xµ)ψ(xµ) term in the equation for the
propagator. The validity of this approximation depends on the specific values of the parameters in the Lagrangian
and the properties of the semantic wave function. In LLMs, this approximation might be reasonable if the semantic
charge density is relatively low or if the gauge coupling is weak.
The inverse Kernel satisfies the following equation

(−∂2
j )K

−1
ij (xµ, yµ) = δijδ

N (xµ − yµ). (110)

The solution to the simplified equation is

K−1
ij (xµ, yµ) = δijG(xµ, yµ), (111)

where G(xµ, yµ) is the Green’s function for the Laplacian in N dimensions. The Green’s function satisfies the equation

(−∂2
j )G(xµ, yµ) = δN (xµ − yµ). (112)

The solution for G(xµ, x
′
µ) is N-dependent:

G(xµ, x
′
µ) = − Γ (N/2)

2(N − 2)πN/2|xµ − x′
µ|N−2

(N ̸= 2). (113)

The Green’s function represents the influence of a semantic ”charge” at point yµ on the potential at point xµ. It
effectively describes how semantic information propagates through the semantic space. Substituting the expression
for the propagator into the effective action, we get

Seff = S0 −
1

2

∫
dt

∫
dNxdNyJi(xµ)G(xµ, yµ)Ji(yµ) + SN . (114)

The effective Lagrangian is then

Leff =
i

2
(ψ∗∂0ψ − ψ∂0ψ

∗)− 1

2

∑
(∂iψ

∗)(∂iψ)

− 1

2

∫
dNy (ψ∗(xµ)∂iψ(xµ)− ψ(xµ)∂iψ

∗(xµ))G(xµ, yµ) (ψ
∗(yµ)∂iψ(yµ)− ψ(yµ)∂iψ

∗(yµ)) + LN .
(115)
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This means that the effective action, after integrating out Ai, is

Seff = S0 −
1

2

∫
dt

∫
dNxdNyJi(xµ)K

−1
ij (xµ, yµ)Jj(yµ) + SN , (106)

where S0 is the action for the ψ field without the Ai field. The inverse of the kernel, K−1
ij (xµ, yµ), is called the

propagator. It satisfies the following equation

∫
dt

∫
dNzKik(xµ, zµ)K

−1
kj (zµ, yµ) = δijδ

N (xµ − yµ). (107)

Substituting the expression for Kij(xµ, yµ), we get

∫
dt

∫
dNz(−∂2

j − ψ∗(xµ)ψ(xµ))δikδ
N (xµ − zµ)K

−1
kj (zµ, yµ) = δijδ

N (xµ − yµ). (108)

This simplifies to
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ij (xµ, yµ) = δijδ

N (xµ − yµ). (109)

To make progress, we make the weak coupling approximation. This means that we assume that the interaction
between the ψ field and the Ai field is weak. This allows us to neglect the ψ∗(xµ)ψ(xµ) term in the equation for the
propagator. The validity of this approximation depends on the specific values of the parameters in the Lagrangian
and the properties of the semantic wave function. In LLMs, this approximation might be reasonable if the semantic
charge density is relatively low or if the gauge coupling is weak.
The inverse Kernel satisfies the following equation

(−∂2
j )K

−1
ij (xµ, yµ) = δijδ

N (xµ − yµ). (110)

The solution to the simplified equation is

K−1
ij (xµ, yµ) = δijG(xµ, yµ), (111)

where G(xµ, yµ) is the Green’s function for the Laplacian in N dimensions. The Green’s function satisfies the equation

(−∂2
j )G(xµ, yµ) = δN (xµ − yµ). (112)

The solution for G(xµ, x
′
µ) is N-dependent:

G(xµ, x
′
µ) = − Γ (N/2)

2(N − 2)πN/2|xµ − x′
µ|N−2

(N ̸= 2). (113)

The Green’s function represents the influence of a semantic ”charge” at point yµ on the potential at point xµ. It
effectively describes how semantic information propagates through the semantic space. Substituting the expression
for the propagator into the effective action, we get

Seff = S0 −
1

2

∫
dt

∫
dNxdNyJi(xµ)G(xµ, yµ)Ji(yµ) + SN . (114)

The effective Lagrangian is then

Leff =
i

2
(ψ∗∂0ψ − ψ∂0ψ

∗)− 1

2

∑
(∂iψ

∗)(∂iψ)

− 1

2

∫
dNy (ψ∗(xµ)∂iψ(xµ)− ψ(xµ)∂iψ

∗(xµ))G(xµ, yµ) (ψ
∗(yµ)∂iψ(yµ)− ψ(yµ)∂iψ

∗(yµ)) + LN .
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This means that the effective action, after integrating out Ai, is

Seff = S0 −
1

2

∫
dt

∫
dNxdNyJi(xµ)K

−1
ij (xµ, yµ)Jj(yµ) + SN , (106)

where S0 is the action for the ψ field without the Ai field. The inverse of the kernel, K−1
ij (xµ, yµ), is called the

propagator. It satisfies the following equation

∫
dt

∫
dNzKik(xµ, zµ)K

−1
kj (zµ, yµ) = δijδ

N (xµ − yµ). (107)

Substituting the expression for Kij(xµ, yµ), we get

∫
dt

∫
dNz(−∂2

j − ψ∗(xµ)ψ(xµ))δikδ
N (xµ − zµ)K

−1
kj (zµ, yµ) = δijδ

N (xµ − yµ). (108)

This simplifies to

(−∂2
j − ψ∗(xµ)ψ(xµ))K

−1
ij (xµ, yµ) = δijδ

N (xµ − yµ). (109)

To make progress, we make the weak coupling approximation. This means that we assume that the interaction
between the ψ field and the Ai field is weak. This allows us to neglect the ψ∗(xµ)ψ(xµ) term in the equation for the
propagator. The validity of this approximation depends on the specific values of the parameters in the Lagrangian
and the properties of the semantic wave function. In LLMs, this approximation might be reasonable if the semantic
charge density is relatively low or if the gauge coupling is weak.
The inverse Kernel satisfies the following equation

(−∂2
j )K

−1
ij (xµ, yµ) = δijδ

N (xµ − yµ). (110)

The solution to the simplified equation is

K−1
ij (xµ, yµ) = δijG(xµ, yµ), (111)

where G(xµ, yµ) is the Green’s function for the Laplacian in N dimensions. The Green’s function satisfies the equation

(−∂2
j )G(xµ, yµ) = δN (xµ − yµ). (112)

The solution for G(xµ, x
′
µ) is N-dependent:

G(xµ, x
′
µ) = − Γ (N/2)

2(N − 2)πN/2|xµ − x′
µ|N−2

(N ̸= 2). (113)

The Green’s function represents the influence of a semantic ”charge” at point yµ on the potential at point xµ. It
effectively describes how semantic information propagates through the semantic space. Substituting the expression
for the propagator into the effective action, we get

Seff = S0 −
1

2

∫
dt

∫
dNxdNyJi(xµ)G(xµ, yµ)Ji(yµ) + SN . (114)

The effective Lagrangian is then

Leff =
i

2
(ψ∗∂0ψ − ψ∂0ψ

∗)− 1

2

∑
(∂iψ

∗)(∂iψ)

− 1

2

∫
dNy (ψ∗(xµ)∂iψ(xµ)− ψ(xµ)∂iψ

∗(xµ))G(xµ, yµ) (ψ
∗(yµ)∂iψ(yµ)− ψ(yµ)∂iψ

∗(yµ)) + LN .
(115)
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This means that the effective action, after integrating out Ai, is

Seff = S0 −
1

2

∫
dt

∫
dNxdNyJi(xµ)K

−1
ij (xµ, yµ)Jj(yµ) + SN , (106)

where S0 is the action for the ψ field without the Ai field. The inverse of the kernel, K−1
ij (xµ, yµ), is called the

propagator. It satisfies the following equation

∫
dt

∫
dNzKik(xµ, zµ)K

−1
kj (zµ, yµ) = δijδ

N (xµ − yµ). (107)

Substituting the expression for Kij(xµ, yµ), we get

∫
dt

∫
dNz(−∂2

j − ψ∗(xµ)ψ(xµ))δikδ
N (xµ − zµ)K

−1
kj (zµ, yµ) = δijδ

N (xµ − yµ). (108)

This simplifies to

(−∂2
j − ψ∗(xµ)ψ(xµ))K

−1
ij (xµ, yµ) = δijδ

N (xµ − yµ). (109)

To make progress, we make the weak coupling approximation. This means that we assume that the interaction
between the ψ field and the Ai field is weak. This allows us to neglect the ψ∗(xµ)ψ(xµ) term in the equation for the
propagator. The validity of this approximation depends on the specific values of the parameters in the Lagrangian
and the properties of the semantic wave function. In LLMs, this approximation might be reasonable if the semantic
charge density is relatively low or if the gauge coupling is weak.
The inverse Kernel satisfies the following equation

(−∂2
j )K

−1
ij (xµ, yµ) = δijδ

N (xµ − yµ). (110)

The solution to the simplified equation is

K−1
ij (xµ, yµ) = δijG(xµ, yµ), (111)

where G(xµ, yµ) is the Green’s function for the Laplacian in N dimensions. The Green’s function satisfies the equation

(−∂2
j )G(xµ, yµ) = δN (xµ − yµ). (112)

The solution for G(xµ, x
′
µ) is N-dependent:

G(xµ, x
′
µ) = − Γ (N/2)

2(N − 2)πN/2|xµ − x′
µ|N−2

(N ̸= 2). (113)

The Green’s function represents the influence of a semantic ”charge” at point yµ on the potential at point xµ. It
effectively describes how semantic information propagates through the semantic space. Substituting the expression
for the propagator into the effective action, we get

Seff = S0 −
1

2

∫
dt

∫
dNxdNyJi(xµ)G(xµ, yµ)Ji(yµ) + SN . (114)

The effective Lagrangian is then

Leff =
i

2
(ψ∗∂0ψ − ψ∂0ψ

∗)− 1

2

∑
(∂iψ

∗)(∂iψ)

− 1

2

∫
dNy (ψ∗(xµ)∂iψ(xµ)− ψ(xµ)∂iψ

∗(xµ))G(xµ, yµ) (ψ
∗(yµ)∂iψ(yµ)− ψ(yµ)∂iψ

∗(yµ)) + LN .
(115)
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This means that the effective action, after integrating out Ai, is

Seff = S0 −
1

2

∫
dt

∫
dNxdNyJi(xµ)K

−1
ij (xµ, yµ)Jj(yµ) + SN , (106)

where S0 is the action for the ψ field without the Ai field. The inverse of the kernel, K−1
ij (xµ, yµ), is called the

propagator. It satisfies the following equation

∫
dt

∫
dNzKik(xµ, zµ)K

−1
kj (zµ, yµ) = δijδ

N (xµ − yµ). (107)

Substituting the expression for Kij(xµ, yµ), we get

∫
dt

∫
dNz(−∂2

j − ψ∗(xµ)ψ(xµ))δikδ
N (xµ − zµ)K

−1
kj (zµ, yµ) = δijδ

N (xµ − yµ). (108)

This simplifies to

(−∂2
j − ψ∗(xµ)ψ(xµ))K

−1
ij (xµ, yµ) = δijδ

N (xµ − yµ). (109)

To make progress, we make the weak coupling approximation. This means that we assume that the interaction
between the ψ field and the Ai field is weak. This allows us to neglect the ψ∗(xµ)ψ(xµ) term in the equation for the
propagator. The validity of this approximation depends on the specific values of the parameters in the Lagrangian
and the properties of the semantic wave function. In LLMs, this approximation might be reasonable if the semantic
charge density is relatively low or if the gauge coupling is weak.

The inverse Kernel satisfies the following equation

(−∂2
j )K

−1
ij (xµ, yµ) = δijδ

N (xµ − yµ). (110)

The solution to the simplified equation is

K−1
ij (xµ, yµ) = δijG(xµ, yµ), (111)

where G(xµ, yµ) is the Green’s function for the Laplacian in N dimensions. The Green’s function satisfies the equation

(−∂2
j )G(xµ, yµ) = δN (xµ − yµ). (112)

The solution for G(xµ, x
′
µ) is N-dependent:

G(xµ, x
′
µ) = − Γ (N/2)

2(N − 2)πN/2|xµ − x′
µ|N−2

(N ̸= 2). (113)

The Green’s function represents the influence of a semantic ”charge” at point yµ on the potential at point xµ. It
effectively describes how semantic information propagates through the semantic space. Substituting the expression
for the propagator into the effective action, we get

Seff = S0 −
1

2

∫
dt

∫
dNxdNyJi(xµ)G(xµ, yµ)Ji(yµ) + SN . (114)

The effective Lagrangian is then

Leff =
i

2
(ψ∗∂0ψ − ψ∂0ψ

∗)− 1

2

∑
(∂iψ

∗)(∂iψ)

− 1

2

∫
dNy (ψ∗(xµ)∂iψ(xµ)− ψ(xµ)∂iψ

∗(xµ))G(xµ, yµ) (ψ
∗(yµ)∂iψ(yµ)− ψ(yµ)∂iψ

∗(yµ)) + LN .
(115)



OA J Applied Sci Technol, 2025 Volume 3 | Issue 1 | 17

To make progress, we make the weak coupling approximation. 
This means that we assume that the interaction between the ψ 
field and the Ai field is weak. This allows us to neglect the ψ*(xµ)
ψ(xµ) term in the equation for the propagator. The validity of this 
approximation depends on the specific values of the parameters in 
the Lagrangian and the properties of the semantic wave function. 
In LLMs, this approximation might be reasonable if the semantic 
charge density is relatively low or if the gauge coupling is weak.
The inverse Kernel satisfies the following equation

The solution to the simplified equation is

where G(xµ,yµ) is the Green’s function for the Laplacian in N 
dimensions. The Green’s function satisfies the equation

The solution for G(xµ, x'µ) is N-dependent:

The Green’s function represents the influence of a semantic 
”charge” at point yµ on the potential at point xµ. It effectively 
describes how semantic information propagates through the 
semantic space. Substituting the expression for the propagator into 
the effective action, we get

	

The effective Lagrangian is then

This effective Lagrangian describes the dynamics of the ψ field, 
taking into account the effects of the integratedout Ai field to 
quadratic order in the weak coupling approximation. The next to 
last term represents a non-local interaction between the ψ field at 
different points in space, mediated by the Green’s function G(xµ,yµ). 
This non-local interaction implies that the semantic meaning at 
one point in the semantic space can directly influence the semantic 

meaning at other points, even if they are far apart. This could be 
related to the ability of LLMs to capture long-range dependencies 
in text.

The effective action, derived from this Lagrangian, provides a 
powerful tool for analyzing the behavior of LLMs. By studying the 
solutions to the equations of motion derived from this action, we 
can gain insights into how LLMs process and generate language. 
However, it is important to remember that this model is based on 
several simplifying assumptions, and its predictions should be 
interpreted with caution. Further research is needed to validate 
this model and to explore its implications for our understanding 
of LLMs.

9.9. Interpretation of the Effective Lagrangian: Impact of 
Approximations
The effective Lagrangian, derived after integrating out the 
gauge field Ai and employing the weak coupling and mean-field 
approximations, provides a modified perspective on the semantic 
dynamics within LLMs compared to the initial Lagrangian. It is 
crucial to understand how these approximations influence the 
interpretation of the terms and the overall model. In the original 
Lagrangian (Equation 77), the interaction between the semantic 
wave function ψ and the gauge field Ai was explicit and local. Terms 
involving Ai directly coupled the semantic current and density to 
the vector potential at the same spatial point, representing a direct 
and immediate influence of the gauge field on the semantic wave 
function.

However, the effective Lagrangian (Equation 115), obtained after 
integrating out Ai and applying the weak coupling approximation, 
exhibits a key difference: the emergence of a non-local interaction 
term. This term, involving the Green’s function G(x,y), couples 
the semantic current at point x to the semantic current at point y, 
integrated over the entire semantic space.This non-locality has 
several important implications. The original Lagrangian primarily 
captured local interactions. In contrast, the effective Lagrangian 
explicitly incorporates long-range dependencies between different 
regions of the semantic space. This suggests that the semantic 
meaning at one location can directly influence the semantic 
meaning at distant locations, mediated by the Green’s function. 
This is particularly relevant in the context of LLMs, which are 
known for their ability to capture long-range dependencies in 
text. The non-local interaction, mediated by the Green’s function, 
may be viewed as analogous to the self-attention mechanism in 
Transformer architectures [1], which enables the model to attend 
to different parts of the input sequence, irrespective of their 
proximity.

Furthermore, the integration of Ai effectively generates an ”effective 
potential” governing the interaction between semantic elements. 
This potential is encoded in the Green’s function G(x,y), which 
dictates the strength and form of the interaction between points x 
and y. The shape of this potential is determined by the underlying 
Laplacian operator and the dimensionality of the semantic space. 
The approximations employed to derive the effective Lagrangian 
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This means that the effective action, after integrating out Ai, is

Seff = S0 −
1

2

∫
dt

∫
dNxdNyJi(xµ)K

−1
ij (xµ, yµ)Jj(yµ) + SN , (106)

where S0 is the action for the ψ field without the Ai field. The inverse of the kernel, K−1
ij (xµ, yµ), is called the

propagator. It satisfies the following equation

∫
dt

∫
dNzKik(xµ, zµ)K

−1
kj (zµ, yµ) = δijδ

N (xµ − yµ). (107)

Substituting the expression for Kij(xµ, yµ), we get

∫
dt

∫
dNz(−∂2

j − ψ∗(xµ)ψ(xµ))δikδ
N (xµ − zµ)K

−1
kj (zµ, yµ) = δijδ

N (xµ − yµ). (108)

This simplifies to

(−∂2
j − ψ∗(xµ)ψ(xµ))K

−1
ij (xµ, yµ) = δijδ

N (xµ − yµ). (109)

To make progress, we make the weak coupling approximation. This means that we assume that the interaction
between the ψ field and the Ai field is weak. This allows us to neglect the ψ∗(xµ)ψ(xµ) term in the equation for the
propagator. The validity of this approximation depends on the specific values of the parameters in the Lagrangian
and the properties of the semantic wave function. In LLMs, this approximation might be reasonable if the semantic
charge density is relatively low or if the gauge coupling is weak.

The inverse Kernel satisfies the following equation

(−∂2
j )K

−1
ij (xµ, yµ) = δijδ

N (xµ − yµ). (110)

The solution to the simplified equation is

K−1
ij (xµ, yµ) = δijG(xµ, yµ), (111)

where G(xµ, yµ) is the Green’s function for the Laplacian in N dimensions. The Green’s function satisfies the equation

(−∂2
j )G(xµ, yµ) = δN (xµ − yµ). (112)

The solution for G(xµ, x
′
µ) is N-dependent:

G(xµ, x
′
µ) = − Γ (N/2)

2(N − 2)πN/2|xµ − x′
µ|N−2

(N ̸= 2). (113)

The Green’s function represents the influence of a semantic ”charge” at point yµ on the potential at point xµ. It
effectively describes how semantic information propagates through the semantic space. Substituting the expression
for the propagator into the effective action, we get

Seff = S0 −
1

2

∫
dt

∫
dNxdNyJi(xµ)G(xµ, yµ)Ji(yµ) + SN . (114)

The effective Lagrangian is then

Leff =
i

2
(ψ∗∂0ψ − ψ∂0ψ

∗)− 1

2

∑
(∂iψ

∗)(∂iψ)

− 1

2

∫
dNy (ψ∗(xµ)∂iψ(xµ)− ψ(xµ)∂iψ

∗(xµ))G(xµ, yµ) (ψ
∗(yµ)∂iψ(yµ)− ψ(yµ)∂iψ

∗(yµ)) + LN .
(115)
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This means that the effective action, after integrating out Ai, is

Seff = S0 −
1

2

∫
dt

∫
dNxdNyJi(xµ)K

−1
ij (xµ, yµ)Jj(yµ) + SN , (106)

where S0 is the action for the ψ field without the Ai field. The inverse of the kernel, K−1
ij (xµ, yµ), is called the

propagator. It satisfies the following equation

∫
dt

∫
dNzKik(xµ, zµ)K

−1
kj (zµ, yµ) = δijδ

N (xµ − yµ). (107)

Substituting the expression for Kij(xµ, yµ), we get

∫
dt

∫
dNz(−∂2

j − ψ∗(xµ)ψ(xµ))δikδ
N (xµ − zµ)K

−1
kj (zµ, yµ) = δijδ

N (xµ − yµ). (108)

This simplifies to

(−∂2
j − ψ∗(xµ)ψ(xµ))K

−1
ij (xµ, yµ) = δijδ

N (xµ − yµ). (109)

To make progress, we make the weak coupling approximation. This means that we assume that the interaction
between the ψ field and the Ai field is weak. This allows us to neglect the ψ∗(xµ)ψ(xµ) term in the equation for the
propagator. The validity of this approximation depends on the specific values of the parameters in the Lagrangian
and the properties of the semantic wave function. In LLMs, this approximation might be reasonable if the semantic
charge density is relatively low or if the gauge coupling is weak.

The inverse Kernel satisfies the following equation

(−∂2
j )K

−1
ij (xµ, yµ) = δijδ

N (xµ − yµ). (110)

The solution to the simplified equation is

K−1
ij (xµ, yµ) = δijG(xµ, yµ), (111)

where G(xµ, yµ) is the Green’s function for the Laplacian in N dimensions. The Green’s function satisfies the equation

(−∂2
j )G(xµ, yµ) = δN (xµ − yµ). (112)

The solution for G(xµ, x
′
µ) is N-dependent:

G(xµ, x
′
µ) = − Γ (N/2)

2(N − 2)πN/2|xµ − x′
µ|N−2

(N ̸= 2). (113)

The Green’s function represents the influence of a semantic ”charge” at point yµ on the potential at point xµ. It
effectively describes how semantic information propagates through the semantic space. Substituting the expression
for the propagator into the effective action, we get

Seff = S0 −
1

2

∫
dt

∫
dNxdNyJi(xµ)G(xµ, yµ)Ji(yµ) + SN . (114)

The effective Lagrangian is then

Leff =
i

2
(ψ∗∂0ψ − ψ∂0ψ

∗)− 1
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∑
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∗)(∂iψ)

− 1
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∫
dNy (ψ∗(xµ)∂iψ(xµ)− ψ(xµ)∂iψ

∗(xµ))G(xµ, yµ) (ψ
∗(yµ)∂iψ(yµ)− ψ(yµ)∂iψ

∗(yµ)) + LN .
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This means that the effective action, after integrating out Ai, is

Seff = S0 −
1

2

∫
dt

∫
dNxdNyJi(xµ)K

−1
ij (xµ, yµ)Jj(yµ) + SN , (106)

where S0 is the action for the ψ field without the Ai field. The inverse of the kernel, K−1
ij (xµ, yµ), is called the

propagator. It satisfies the following equation

∫
dt
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To make progress, we make the weak coupling approximation. This means that we assume that the interaction
between the ψ field and the Ai field is weak. This allows us to neglect the ψ∗(xµ)ψ(xµ) term in the equation for the
propagator. The validity of this approximation depends on the specific values of the parameters in the Lagrangian
and the properties of the semantic wave function. In LLMs, this approximation might be reasonable if the semantic
charge density is relatively low or if the gauge coupling is weak.
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µ) is N-dependent:

G(xµ, x
′
µ) = − Γ (N/2)

2(N − 2)πN/2|xµ − x′
µ|N−2

(N ̸= 2). (113)

The Green’s function represents the influence of a semantic ”charge” at point yµ on the potential at point xµ. It
effectively describes how semantic information propagates through the semantic space. Substituting the expression
for the propagator into the effective action, we get
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where S0 is the action for the ψ field without the Ai field. The inverse of the kernel, K−1
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To make progress, we make the weak coupling approximation. This means that we assume that the interaction
between the ψ field and the Ai field is weak. This allows us to neglect the ψ∗(xµ)ψ(xµ) term in the equation for the
propagator. The validity of this approximation depends on the specific values of the parameters in the Lagrangian
and the properties of the semantic wave function. In LLMs, this approximation might be reasonable if the semantic
charge density is relatively low or if the gauge coupling is weak.
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µ) is N-dependent:

G(xµ, x
′
µ) = − Γ (N/2)

2(N − 2)πN/2|xµ − x′
µ|N−2

(N ̸= 2). (113)

The Green’s function represents the influence of a semantic ”charge” at point yµ on the potential at point xµ. It
effectively describes how semantic information propagates through the semantic space. Substituting the expression
for the propagator into the effective action, we get
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between the ψ field and the Ai field is weak. This allows us to neglect the ψ∗(xµ)ψ(xµ) term in the equation for the
propagator. The validity of this approximation depends on the specific values of the parameters in the Lagrangian
and the properties of the semantic wave function. In LLMs, this approximation might be reasonable if the semantic
charge density is relatively low or if the gauge coupling is weak.
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where G(xµ, yµ) is the Green’s function for the Laplacian in N dimensions. The Green’s function satisfies the equation

(−∂2
j )G(xµ, yµ) = δN (xµ − yµ). (112)

The solution for G(xµ, x
′
µ) is N-dependent:

G(xµ, x
′
µ) = − Γ (N/2)

2(N − 2)πN/2|xµ − x′
µ|N−2

(N ̸= 2). (113)

The Green’s function represents the influence of a semantic ”charge” at point yµ on the potential at point xµ. It
effectively describes how semantic information propagates through the semantic space. Substituting the expression
for the propagator into the effective action, we get
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where S0 is the action for the ψ field without the Ai field. The inverse of the kernel, K−1
ij (xµ, yµ), is called the

propagator. It satisfies the following equation
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To make progress, we make the weak coupling approximation. This means that we assume that the interaction
between the ψ field and the Ai field is weak. This allows us to neglect the ψ∗(xµ)ψ(xµ) term in the equation for the
propagator. The validity of this approximation depends on the specific values of the parameters in the Lagrangian
and the properties of the semantic wave function. In LLMs, this approximation might be reasonable if the semantic
charge density is relatively low or if the gauge coupling is weak.
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(−∂2
j )K

−1
ij (xµ, yµ) = δijδ

N (xµ − yµ). (110)

The solution to the simplified equation is

K−1
ij (xµ, yµ) = δijG(xµ, yµ), (111)

where G(xµ, yµ) is the Green’s function for the Laplacian in N dimensions. The Green’s function satisfies the equation

(−∂2
j )G(xµ, yµ) = δN (xµ − yµ). (112)

The solution for G(xµ, x
′
µ) is N-dependent:

G(xµ, x
′
µ) = − Γ (N/2)

2(N − 2)πN/2|xµ − x′
µ|N−2

(N ̸= 2). (113)

The Green’s function represents the influence of a semantic ”charge” at point yµ on the potential at point xµ. It
effectively describes how semantic information propagates through the semantic space. Substituting the expression
for the propagator into the effective action, we get
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This means that the effective action, after integrating out Ai, is
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dt
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dNxdNyJi(xµ)K

−1
ij (xµ, yµ)Jj(yµ) + SN , (106)

where S0 is the action for the ψ field without the Ai field. The inverse of the kernel, K−1
ij (xµ, yµ), is called the

propagator. It satisfies the following equation

∫
dt

∫
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−1
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To make progress, we make the weak coupling approximation. This means that we assume that the interaction
between the ψ field and the Ai field is weak. This allows us to neglect the ψ∗(xµ)ψ(xµ) term in the equation for the
propagator. The validity of this approximation depends on the specific values of the parameters in the Lagrangian
and the properties of the semantic wave function. In LLMs, this approximation might be reasonable if the semantic
charge density is relatively low or if the gauge coupling is weak.
The inverse Kernel satisfies the following equation

(−∂2
j )K

−1
ij (xµ, yµ) = δijδ

N (xµ − yµ). (110)

The solution to the simplified equation is

K−1
ij (xµ, yµ) = δijG(xµ, yµ), (111)

where G(xµ, yµ) is the Green’s function for the Laplacian in N dimensions. The Green’s function satisfies the equation

(−∂2
j )G(xµ, yµ) = δN (xµ − yµ). (112)

The solution for G(xµ, x
′
µ) is N-dependent:

G(xµ, x
′
µ) = − Γ (N/2)

2(N − 2)πN/2|xµ − x′
µ|N−2

(N ̸= 2). (113)

The Green’s function represents the influence of a semantic ”charge” at point yµ on the potential at point xµ. It
effectively describes how semantic information propagates through the semantic space. Substituting the expression
for the propagator into the effective action, we get
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This means that the effective action, after integrating out Ai, is
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where S0 is the action for the ψ field without the Ai field. The inverse of the kernel, K−1
ij (xµ, yµ), is called the

propagator. It satisfies the following equation

∫
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∫
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To make progress, we make the weak coupling approximation. This means that we assume that the interaction
between the ψ field and the Ai field is weak. This allows us to neglect the ψ∗(xµ)ψ(xµ) term in the equation for the
propagator. The validity of this approximation depends on the specific values of the parameters in the Lagrangian
and the properties of the semantic wave function. In LLMs, this approximation might be reasonable if the semantic
charge density is relatively low or if the gauge coupling is weak.
The inverse Kernel satisfies the following equation

(−∂2
j )K

−1
ij (xµ, yµ) = δijδ

N (xµ − yµ). (110)

The solution to the simplified equation is

K−1
ij (xµ, yµ) = δijG(xµ, yµ), (111)

where G(xµ, yµ) is the Green’s function for the Laplacian in N dimensions. The Green’s function satisfies the equation

(−∂2
j )G(xµ, yµ) = δN (xµ − yµ). (112)

The solution for G(xµ, x
′
µ) is N-dependent:

G(xµ, x
′
µ) = − Γ (N/2)

2(N − 2)πN/2|xµ − x′
µ|N−2

(N ̸= 2). (113)

The Green’s function represents the influence of a semantic ”charge” at point yµ on the potential at point xµ. It
effectively describes how semantic information propagates through the semantic space. Substituting the expression
for the propagator into the effective action, we get
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This means that the effective action, after integrating out Ai, is
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where S0 is the action for the ψ field without the Ai field. The inverse of the kernel, K−1
ij (xµ, yµ), is called the

propagator. It satisfies the following equation
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∫
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To make progress, we make the weak coupling approximation. This means that we assume that the interaction
between the ψ field and the Ai field is weak. This allows us to neglect the ψ∗(xµ)ψ(xµ) term in the equation for the
propagator. The validity of this approximation depends on the specific values of the parameters in the Lagrangian
and the properties of the semantic wave function. In LLMs, this approximation might be reasonable if the semantic
charge density is relatively low or if the gauge coupling is weak.
The inverse Kernel satisfies the following equation

(−∂2
j )K

−1
ij (xµ, yµ) = δijδ

N (xµ − yµ). (110)

The solution to the simplified equation is

K−1
ij (xµ, yµ) = δijG(xµ, yµ), (111)

where G(xµ, yµ) is the Green’s function for the Laplacian in N dimensions. The Green’s function satisfies the equation

(−∂2
j )G(xµ, yµ) = δN (xµ − yµ). (112)

The solution for G(xµ, x
′
µ) is N-dependent:

G(xµ, x
′
µ) = − Γ (N/2)

2(N − 2)πN/2|xµ − x′
µ|N−2

(N ̸= 2). (113)

The Green’s function represents the influence of a semantic ”charge” at point yµ on the potential at point xµ. It
effectively describes how semantic information propagates through the semantic space. Substituting the expression
for the propagator into the effective action, we get
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This means that the effective action, after integrating out Ai, is
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dt

∫
dNxdNyJi(xµ)K
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where S0 is the action for the ψ field without the Ai field. The inverse of the kernel, K−1
ij (xµ, yµ), is called the

propagator. It satisfies the following equation

∫
dt

∫
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∫
dt

∫
dNz(−∂2

j − ψ∗(xµ)ψ(xµ))δikδ
N (xµ − zµ)K

−1
kj (zµ, yµ) = δijδ

N (xµ − yµ). (108)

This simplifies to

(−∂2
j − ψ∗(xµ)ψ(xµ))K

−1
ij (xµ, yµ) = δijδ

N (xµ − yµ). (109)

To make progress, we make the weak coupling approximation. This means that we assume that the interaction
between the ψ field and the Ai field is weak. This allows us to neglect the ψ∗(xµ)ψ(xµ) term in the equation for the
propagator. The validity of this approximation depends on the specific values of the parameters in the Lagrangian
and the properties of the semantic wave function. In LLMs, this approximation might be reasonable if the semantic
charge density is relatively low or if the gauge coupling is weak.
The inverse Kernel satisfies the following equation

(−∂2
j )K

−1
ij (xµ, yµ) = δijδ

N (xµ − yµ). (110)

The solution to the simplified equation is

K−1
ij (xµ, yµ) = δijG(xµ, yµ), (111)

where G(xµ, yµ) is the Green’s function for the Laplacian in N dimensions. The Green’s function satisfies the equation

(−∂2
j )G(xµ, yµ) = δN (xµ − yµ). (112)

The solution for G(xµ, x
′
µ) is N-dependent:

G(xµ, x
′
µ) = − Γ (N/2)

2(N − 2)πN/2|xµ − x′
µ|N−2

(N ̸= 2). (113)

The Green’s function represents the influence of a semantic ”charge” at point yµ on the potential at point xµ. It
effectively describes how semantic information propagates through the semantic space. Substituting the expression
for the propagator into the effective action, we get
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This means that the effective action, after integrating out Ai, is
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where S0 is the action for the ψ field without the Ai field. The inverse of the kernel, K−1
ij (xµ, yµ), is called the

propagator. It satisfies the following equation

∫
dt

∫
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Substituting the expression for Kij(xµ, yµ), we get
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To make progress, we make the weak coupling approximation. This means that we assume that the interaction
between the ψ field and the Ai field is weak. This allows us to neglect the ψ∗(xµ)ψ(xµ) term in the equation for the
propagator. The validity of this approximation depends on the specific values of the parameters in the Lagrangian
and the properties of the semantic wave function. In LLMs, this approximation might be reasonable if the semantic
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inevitably lead to a loss of microscopic details. By integrating 
out Ai, we have averaged over its fluctuations and correlations. 
Consequently, the effective Lagrangian only captures the average 
effect of the gauge field on the semantic wave function. The 
weak coupling approximation further simplifies the interaction, 
potentially neglecting higher-order effects. The mean-field 
approximation replaces the quantum fields with their average 
values, neglecting quantum fluctuations. This implies that the 
effective Lagrangian describes the behavior of the average 
semantic wave function, rather than the behavior of individual 
semantic elements. The validity of this approximation hinges on 
the assumption that fluctuations are small compared to the mean 
field, which may not always hold in LLMs.

In the original Lagrangian, the semantic current Ji directly 
interacted with the vector potential Ai, representing a local flow 
of semantic information. In the effective Lagrangian, the semantic 
current at one point influences the semantic current at another point 
through the Green’s function. This suggests a more distributed 
and interconnected flow of semantic information across the 
semantic space. In summary, the effective Lagrangian provides a 
simplified but potentially insightful framework for understanding 
the dynamics of semantic meaning in LLMs. The approximations 
made to obtain this Lagrangian introduce both advantages and 
limitations. The non-local interaction term captures long-range 
dependencies, potentially mirroring the function of self-attention, 
but the loss of microscopic details and the mean-field perspective 
limit the accuracy of the model. Despite these limitations, the 
effective Lagrangian offers valuable insights into how LLMs 
process and generate language, warranting further investigation 
and empirical validation.

9.10. Physical Interpretation of the Semantic Field
In the context of LLMs, our quantum-like model allows for a 
speculative, yet potentially insightful, interpretation of the gauge 
fields as representing different aspects of semantic meaning. The 
scalar potential, ϕ (or A0), can be interpreted as reflecting the 
overall semantic context or ”energy” within the LLM, influencing 
the probability of activating semantically aligned words. This 
captures the static contextual bias or ”semantic atmosphere” 
surrounding a word or phrase, reflecting the overall influence of 
the surrounding concepts. A high scalar potential might correspond 
to a state where the LLM is highly engaged with a particular topic, 
leading to a higher probability of generating words related to that 
topic. Conversely, a low scalar potential might indicate a state of 
low engagement or uncertainty. It could also bias the LLM towards 
certain concepts learned during training, influencing token 
probabilities and potentially relating to the magnitude of hidden 
state vectors. For example, when processing a prompt about 
”climate change,” the scalar potential would be high in regions of 
the semantic space associated with environmental issues, scientific 
terms, and political debates, increasing the likelihood of generating 
relevant terms.

The vector potential, A, on the other hand, can be interpreted as 
representing the semantic relationships or ”forces” between words 

and phrases, guiding the flow of semantic information and shaping 
local interactions. This captures the dynamic flow of semantic 
information, reflecting shifts in topic, argument structure, and 
narrative flow, and possibly indicating the relationships and 
dependencies between different concepts. The vector potential 
could be related to the attention weights in Transformer networks, 
encoding relationships and directing the flow of semantic 
information. It could also encode the argument structure of verbs, 
specifying semantic roles, or guide topic shifts and narrative flow.

Together, ϕ and A constitute a ”semantic field” that governs the 
behavior of the semantic wave function, ψ. While our current model 
simplifies the analysis by primarily focusing on the scalar potential 
and often neglecting the vector potential, future research should 
explore the potential benefits of incorporating the vector potential 
to achieve a more complete nderstanding of the dynamic interplay 
of semantic meanings within LLMs. However, it is crucial to 
acknowledge the limitations of this analogy, particularly the gauge 
dependence of A and ϕ, and to emphasize the need for empirical 
validation to support these theoretical interpretations. The semantic 
field is likely an emergent property of the LLM’s complex neural 
network architecture, and its true nature remains a subject for 
further investigation. These interpretations are speculative, and 
future work should focus on developing experiments to test these 
hypotheses, such as analyzing attention weights or measuring the 
influence of perturbations on the semantic space.

10. Assumptions and Limitations
The quantum-like model presented in this paper relies on several 
simplifying assumptions, which are important to acknowledge 
and discuss. These assumptions allow us to develop a tractable 
mathematical framework, but they also introduce limitations that 
could affect the validity of our conclusions and the scope of our 
interpretations.

10.1. Completeness of Vocabulary
One key assumption is that the LLM’s finite vocabulary forms 
an approximately complete basis for representing semantic 
information. This assumption allows us to treat the semantic 
space as a discrete space built upon a finite set of basis states, 
simplifying the mathematical formalism and enabling the analogy 
to quantum systems with discrete energy levels. However, it is 
crucial to recognize that the vocabulary is not truly complete. 
New words and phrases are constantly being created, and the 
LLM’s vocabulary may not capture all of the nuances of human 
language, especially in specialized domains or rapidly evolving 
cultural contexts. Furthermore, the use of sub-word tokenization, 
while helpful for handling out-of-vocabulary words, can create 
semantic units that are not explicitly present as single entries in the 
vocabulary, potentially blurring the lines between discrete basis 
states.

This limitation could affect the model’s ability to accurately 
represent semantic concepts that are not wellrepresented in the 
vocabulary. For example, the model might struggle to understand 
slang terms, technical jargon, or newly coined words. It might 
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also lead to inaccuracies when dealing with rare or specialized 
language, or when encountering subtle semantic distinctions that 
are not explicitly encoded in the vocabulary. The assumption of 
vocabulary completeness also neglects the dynamic nature of 
language, where word meanings evolve and new concepts emerge 
over time.

10.2. Linearity of Operations on the Semantic Space (Given 
Nonlinear Training)
In several parts of our analysis, we make assumptions that 
implicitly treat operations on the semantic space as linear. It’s 
crucial to acknowledge that this is a simplification, given that the 
LLM’s training process is inherently nonlinear, and the resulting 
embedding space reflects this nonlinearity. While we perform 
linear operations on the learned embeddings, the embeddings 
themselves are the product of a highly nonlinear process. This 
”inherited nonlinearity” means that our linear operations are still 
influenced by the underlying nonlinear structure of the embedding 
space, but they may not be able to fully capture its richness. These 
linearity assumptions manifest in several key aspects of the model:
1.	 Plane Wave Approximations: The approximation of semantic 

waves as plane waves, solutions to linear wave equations, 
simplifies wave behavior and neglects potential distortions or 
interactions that would arise in a nonlinear medium.

2.	 Superposition of Semantic States: The representation of a 
semantic state as a linear superposition of basis states, |α⟩ 
= Pci|ψi⟩, assumes that the meaning of a complex phrase is 
simply the sum of the meanings of its individual components, 
weighted by coefficients. This neglects the possibility of 
emergent meanings arising from the interaction of words.

3.	 Linear Schr¨odinger Equation (Initial Formulation): The initial 
use of the linear Schr¨odinger equation to model semantic 
wave propagation assumes that the semantic wave function 
evolves linearly, without self-interaction or interaction with 
other semantic components.

4.	 Complex-Valued Similarity Measure: The complex-valued 
similarity measure, ST(text1, text2) =          , calculates 
similarity by summing the products of complex coefficients, a 
linear operation. This assumes that overall similarity is a sum 
of component similarities, neglecting nonlinear relationships 
between components.

5.	 The derivation of the Green’s function relies on solving a 
simplified, linearized differential equation (the Laplacian). 
This simplification arises from the combined effect of 
the mean-field approximation and the weak coupling 
approximation. The mean-field approximation linearizes the 
problem around the average fields, neglecting fluctuations. 
The weak coupling approximation further simplifies the 
equation by dropping terms that couple the semantic wave 
function and the gauge fields. While the full problem is 
inherently nonlinear due to terms in the Lagrangian that couple 
ψ and Aµ, these approximations allow us to obtain an analytic 
expression for the Green’s function, which would otherwise 
be intractable. This linearized Green’s function then describes 
the propagation of the average semantic potential, neglecting 
nonlinear effects and fluctuations.

The reliance on linear operations limits the model’s ability to 
capture complex semantic phenomena. For example, consider 
the sentence ”That’s sick!” In modern slang, ”sick” can mean 
”amazing” or ”excellent,” a meaning that is not a linear combination 
of the dictionary definition of ”sick.” Similarly, the meaning of a 
metaphor like ”Time is a thief” cannot be derived by simply adding 
the meanings of ”time” and ”thief.” Irony and sarcasm also rely on 
nonlinear inversions of meaning. The model’s reliance on cosine 
similarity, a linear measure, further reinforces this limitation.

10.3. Mean-Field Approximation
When applying the path integral formalism, we employ the mean-
field approximation, which assumes that the quantum fields can 
be approximated by their average values, neglecting quantum 
fluctuations. This approximation greatly simplifies the calculations 
and allows us to obtain an effective action that depends only on the 
average semantic wave function, providing a tractable framework 
for analyzing the dynamics of the semantic space. However, the 
mean-field approximation neglects important fluctuations and 
correlations, which could play a significant role in the dynamics 
of the semantic space, particularly at smaller scales or in highly 
dynamic contexts.

Consequently, the model’s ability to capture subtle semantic effects 
and emergent phenomena, such as the spontaneous emergence of 
new meanings or the rapid shifts in topic that can occur in natural 
language, could be affected. It might also lead to inaccuracies 
when dealing with highly dynamic or unpredictable language, 
where fluctuations play a more prominent role. The mean-field 
approximation also assumes a degree of homogeneity in the 
semantic space, which may not always be valid.

10.4. Weak Coupling Approximation
In deriving the effective action, we also employ the weak coupling 
approximation, which assumes that the interaction between 
the semantic wave function and the gauge field is weak. This 
assumption simplifies the calculation of the effective action 
and allows us to obtain an analytical solution, providing a more 
manageable mathematical framework. However, the interaction 
between the semantic wave function and the gauge field might 
be strong in some cases, particularly when dealing with highly 
charged or polarized semantic concepts, such as those a ssociated 
with strong emotions or deeply held beliefs.

This may have implications for the model’s ability to accurately 
capture the influence of the gauge field on the semantic wave 
function in these situations. It might also lead to inaccuracies when 
dealing with highly emotional or persuasive language, where the 
gauge field plays a more prominent role in shaping the semantic 
landscape. The weak coupling approximation also implies that the 
semantic charge density is relatively low, which may not always 
be the case in LLMs that have learned to represent complex and 
nuanced semantic relationships.

10.5. Static Potential Landscapes
When modeling semantic ambiguity using potential landscapes 
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B. Linearity of Operations on the Semantic Space (Given Nonlinear Training)

In several parts of our analysis, we make assumptions that implicitly treat operations on the semantic space as linear.
It’s crucial to acknowledge that this is a simplification, given that the LLM’s training process is inherently nonlinear,
and the resulting embedding space reflects this nonlinearity. While we perform linear operations on the learned
embeddings, the embeddings themselves are the product of a highly nonlinear process. This ”inherited nonlinearity”
means that our linear operations are still influenced by the underlying nonlinear structure of the embedding space,
but they may not be able to fully capture its richness. These linearity assumptions manifest in several key aspects of
the model:

1. Plane Wave Approximations: The approximation of semantic waves as plane waves, solutions to linear wave
equations, simplifies wave behavior and neglects potential distortions or interactions that would arise in a
nonlinear medium.

2. Superposition of Semantic States: The representation of a semantic state as a linear superposition of basis
states, |α⟩ =

∑
ci|ψi⟩, assumes that the meaning of a complex phrase is simply the sum of the meanings of

its individual components, weighted by coefficients. This neglects the possibility of emergent meanings arising
from the interaction of words.

3. Linear Schrödinger Equation (Initial Formulation): The initial use of the linear Schrödinger equation to model
semantic wave propagation assumes that the semantic wave function evolves linearly, without self-interaction or
interaction with other semantic components.

4. Complex-Valued Similarity Measure: The complex-valued similarity measure, ST (text1, text2) =
∑

c∗1ic2i, cal-
culates similarity by summing the products of complex coefficients, a linear operation. This assumes that overall
similarity is a sum of component similarities, neglecting nonlinear relationships between components.

5. The derivation of the Green’s function relies on solving a simplified, linearized differential equation (the Lapla-
cian). This simplification arises from the combined effect of the mean-field approximation and the weak coupling
approximation. The mean-field approximation linearizes the problem around the average fields, neglecting fluc-
tuations. The weak coupling approximation further simplifies the equation by dropping terms that couple the
semantic wave function and the gauge fields. While the full problem is inherently nonlinear due to terms in
the Lagrangian that couple ψ and Aµ, these approximations allow us to obtain an analytic expression for the
Green’s function, which would otherwise be intractable. This linearized Green’s function then describes the
propagation of the average semantic potential, neglecting nonlinear effects and fluctuations.

The reliance on linear operations limits the model’s ability to capture complex semantic phenomena. For example,
consider the sentence ”That’s sick!” In modern slang, ”sick” can mean ”amazing” or ”excellent,” a meaning that is not
a linear combination of the dictionary definition of ”sick.” Similarly, the meaning of a metaphor like ”Time is a thief”
cannot be derived by simply adding the meanings of ”time” and ”thief.” Irony and sarcasm also rely on nonlinear
inversions of meaning. The model’s reliance on cosine similarity, a linear measure, further reinforces this limitation.

C. Mean-Field Approximation

When applying the path integral formalism, we employ the mean-field approximation, which assumes that the
quantum fields can be approximated by their average values, neglecting quantum fluctuations. This approximation
greatly simplifies the calculations and allows us to obtain an effective action that depends only on the average
semantic wave function, providing a tractable framework for analyzing the dynamics of the semantic space. However,
the mean-field approximation neglects important fluctuations and correlations, which could play a significant role in
the dynamics of the semantic space, particularly at smaller scales or in highly dynamic contexts.

Consequently, the model’s ability to capture subtle semantic effects and emergent phenomena, such as the sponta-
neous emergence of new meanings or the rapid shifts in topic that can occur in natural language, could be affected. It
might also lead to inaccuracies when dealing with highly dynamic or unpredictable language, where fluctuations play
a more prominent role. The mean-field approximation also assumes a degree of homogeneity in the semantic space,
which may not always be valid.
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(e.g., double-well potential, Mexican hat potential), we often 
assume that these landscapes are static and do not change over 
time. This assumption simplifies the analysis and allows us to focus 
on the equilibrium states of the semantic wave function, providing 
a more tractable framework for understanding how LLMs handle 
multiple meanings. However, the potential landscapes are likely 
to be dynamic and to change over time in response to the input 
prompt, the LLM’s internal state, and the interactions between 
different semantic concepts. The context in which a word is used 
can significantly alter its meaning and the corresponding potential 
landscape.

The assumption of a static potential landscape could limit the 
model’s ability to capture the dynamic evolution of semantic 
meaning and the influence of context on word meanings. It might 
also lead to inaccuracies when dealing with language that is highly 
dependent on context or that involves rapid shifts in meaning. The 
assumption of static potential landscapes also neglects the learning 
process, where the potential landscapes themselves are shaped by 
the LLM’s training data.

10.6. Specific Gauge Choice (Coulomb Gauge)
In applying the path integral formalism, we have chosen the 
Coulomb gauge, which simplifies calculations and has a physical 
interpretation in terms of semantic charge conservation. However, 
the Coulomb gauge is not the only possible gauge choice, and other 
gauge choices might provide different insights into the behavior of 
the semantic space. The physical interpretation of the gauge fields 
is also gauge-dependent, meaning that the meaning we ascribe to 
the scalar and vector potentials depends on the gauge we choose.

The choice of the Coulomb gauge could influence the 
interpretation of the results and limit the generality of the model. 
While the Coulomb gauge provides a convenient framework for 
understanding semantic charge conservation, it might not be the 
most natural or appropriate choice for all situations. Other gauge 
choices might reveal different aspects of the semantic landscape 
and provide alternative interpretations of the gauge fields.

10.7. Simplified Representation of LLM Architecture
It is also crucial to acknowledge that our model provides a 
highly simplified representation of the complex neural network 
architecture of LLMs. We have abstracted away many of the 
details of the Transformer architecture, including the multi-head 
attention mechanism, the feedforward networks, and the residual 
connections. While these simplifications allow us to develop a 
tractable mathematical framework, they also limit the model’s 
ability to capture the full complexity of LLM behavior. The model 
does not explicitly account for the role of different layers in the 
network, the flow of information between layers, or the specific 
activation functions used in the neurons.

The simplified nature of the model could affect the model’s ability 
to accurately predict the behavior of LLMs in all situations. It 
might also limit the model’s ability to provide insights into the 
specific mechanisms that drive LLM performance. The model 

should be seen as a high-level abstraction that captures some of 
the key principles underlying LLM behavior, rather than a detailed 
simulation.

11. Hallucinations and Semantic Charge Conservation: A 
Question for Future Investigation
This section explores a potential, albeit speculative, link between 
the constraints imposed by our model and the phenomenon of 
hallucinations in LLMs. We frame this connection as a question 
for future investigation, aiming to provide a new perspective on 
the origins of untruthful or nonsensical text generation. Within our 
model, the imposition of the Coulomb gauge can be interpreted 
as enforcing a form of semantic charge conservation. Analogous 
to charge conservation in electromagnetism, we hypothesize 
that the total semantic meaning within the LLM’s representation 
(represented by the integral of |ψ|2 over the semantic space) 
remains approximately constant. This constraint reflects the finite 
vocabulary and the underlying structure learned during training. 
The LLM, in essence, redistributes semantic meaning across its 
vocabulary to represent different concepts and relationships, but 
the total amount of meaning remains bounded. A key question 
arises: does the stability of this semantic charge conservation 
correlate with the generation of truthful and coherent text? 
We propose that deviations from this idealized conservation, 
potentially arising from noise, incomplete modeling of contextual 
influences, or inherent limitations in the LLM’s representation, 
might be indicative of, or even directly contribute to, instances of 
hallucination.

Several mechanisms could lead to deviations from semantic 
charge conservation. The LLM might fail to fully account for 
the context in which a word or phrase is used, leading to an 
inappropriate redistribution of semantic charge. For example, if 
the LLM misinterprets a negation, it might assign semantic charge 
to the wrong concept, leading to a factual error. Random noise 
in the LLM’s internal state could disrupt the delicate balance of 
semantic charge, leading to the creation of spurious meanings or 
the amplification of irrelevant concepts. If the LLM has overfit its 
training data, it might simply memorize specific facts or patterns 
without truly understanding the underlying semantic relationships. 
In this case, it might generate text that is factually correct but 
semantically incoherent, effectively violating semantic charge 
conservation. The complex, non-linear interactions within the 
deep neural network architecture of LLMs could lead to emergent 
phenomena that are not captured by our simplified model.

Alternatively, even within a system that nominally conserves 
semantic charge, inherent noise and fluctuations in the model’s 
dynamics could lead to the transient emergence of spurious or 
”hallucinatory” meanings. These fluctuations could manifest as 
virtual particles within the semantic space, momentarily borrowing 
energy to create fleeting, nonsensical semantic constructs. The 
creation and annihilation of these virtual particles could, in effect, 
lead to a temporary violation of semantic charge conservation at 
a local level, even if the overall charge remains approximately 
conserved. This perspective suggests that techniques used to 
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regularize LLMs and prevent overfitting might be seen as analogous 
to mechanisms that suppress the creation of virtual particles in 
a quantum field theory, thereby maintaining the integrity of the 
semantic space. These techniques effectively dampen fluctuations 
and encourage the LLM to learn more generalizable semantic 
representations. While these connections are currently speculative, 
they suggest that our framework offers a new perspective for 
investigating the relationship between model constraints, semantic 
stability, and the generation of truthful text.

12. Discussion
This paper presents a quantum-like model offering a new perspective 
on the inner workings of Large Language Models (LLMs). By 
drawing analogies to concepts from quantum mechanics, such 
as superposition, interference, potential landscapes, and path 
integrals, we have developed a framework for understanding 
how semantic meaning is represented and processed within these 
complex systems.

The application of quantum mechanical concepts to the analysis of 
LLM embedding spaces is a relatively unexplored area, offering 
the potential for new insights. The model provides intuitive 
explanations for several observed phenomena in LLMs, such as 
the probabilistic nature of their outputs, their ability to handle 
semantic ambiguity, and the longrange dependencies between 
words and phrases. The use of mathematical tools from quantum 
mechanics, such as the Schr¨odinger equation and the path integral 
formalism, provides a more rigorous framework for analyzing 
LLM behavior than purely descriptive approaches, potentially 
leading to new tools and techniques for analyzing, interpreting, 
and manipulating LLMs based on quantum mechanical principles.

However, it is crucial to acknowledge that LLMs, despite their 
impressive capabilities, remain essentially ”black boxes.” Their 
internal workings are complex and opaque, making it difficult to 
understand precisely how they process and generate language. 
The quantum-like model presented in this paper is not intended 
to be a complete or definitive explanation of LLM behavior. 
Rather, it is an attempt to provide a more interpretable framework 
for understanding their behavior, offering a new set of tools and 
concepts for analyzing their internal representations and dynamics. 
By drawing analogies to quantum mechanics, we hope to shed light 
on the emergent properties of LLMs and to inspire new avenues 
for research.

The model is based on analogies and interpretations, rather than 
direct empirical evidence, and it is not yet clear whether LLM 
embedding spaces actually behave in the way predicted. It is 
likely an oversimplification of the complex dynamics of semantic 
meaning, as many factors known to influence LLM behavior, 
such as the training data, the model architecture, and the specific 
task, are not explicitly accounted for. The physical interpretation 
of the vector potential A and the scalar potential ϕ in the context 
of LLMs requires further clarification. The use of the mean-field 
approximation further simplifies the model, potentially neglecting 
important fluctuations and correlations, and the model has not yet 

been rigorously tested against empirical data from LLMs.

Key results include demonstrating that the probabilistic nature 
of LLM outputs can be understood in terms of a quantum two-
level system, arguing that extending the embedding space to the 
complex domain is necessary to capture semantic interference 
effects, developing a quantum mechanical formulation of semantic 
representation using a ”semantic wave function,” showing how 
potential landscapes can be used to model semantic ambiguity, 
introducing a new, complex-valued similarity measure, presenting 
a path integral formalism for modeling LLM behavior, discussing 
the implications of Coulomb gauge fixing, and speculating on the 
connection between deviations from semantic charge conservation 
and hallucinations.

Several broad research directions emerge from this work. Further 
investigation into the concept of semantic charge, its conservation 
properties, and its relationship to LLM behavior is warranted. 
This includes developing methods for measuring semantic 
charge, exploring the mechanisms that lead to deviations from 
conservation, and investigating the connection between semantic 
charge conservation and the generation of truthful and coherent 
text. Exploring the potential of quantum computing to enhance 
LLM capabilities is a promising area for future research. If the 
semantic space exhibits a truly quantized structure, quantum 
algorithms could offer advantages in tasks such as efficient 
semantic search, where quantum search algorithms, like Grover’s 
algorithm, could potentially accelerate the process of finding the 
closest semantic matches for a given query in the embedding 
space. Quantum simulation techniques could be used to model 
the dynamic evolution of semantic wave functions, potentially 
capturing emergent phenomena and subtle semantic interactions 
that are difficult to simulate classically. Quantum machine learning 
algorithms could be explored for training LLMs, potentially 
leading to models with improved performance, new capabilities, 
or more efficient training processes.

Leveraging the extensive body of knowledge surrounding path 
integrals in physics offers a rich set of tools for analyzing LLM 
dynamics. Adapting techniques from quantum field theory and 
high-energy physics, such as perturbation theory, renormalization 
group methods, and the development of Feynman diagrams, 
could provide new insights into the interactions between semantic 
concepts and the emergence of complex semantic structures. 
Developing ”classical LLM Feynman diagrams” to visualize and 
calculate effective actions could offer a powerful framework for 
understanding and predicting LLM behavior. In addition, insights 
from nonlinear optics are directly applicable to this endeavor.

We could also reconsider our approach to the inherent probabilistic 
behavior of LLMs. While current efforts largely focus on mitigating 
specific inaccuracies like ”hallucinations,” our quantum-like 
model suggests a broader perspective. If LLMs operate within a 
fundamentally probabilistic semantic space governed by quantum-
like principles, then this inherent uncertainty is not merely a 
source of errors, but a fundamental characteristic affecting all 
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aspects of their operation. Instead of solely trying to suppress 
specific manifestations of this probabilistic behavior, perhaps 
we can learn to harness it. Just as quantum microscopes exploit 
quantum fluctuations to achieve resolutions beyond classical 
limits, could we leverage the inherent uncertainty of LLMs to 
generate new ideas, explore creative possibilities, or uncover 
hidden relationships within data? This paradigm shift, from error 
correction to opportunistic exploitation of inherent probabilistic 
behavior, could unlock new and unexpected applications for 
LLMs.
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