
J Math Techniques Comput Math, 2025 Volume 4 | Issue 1 | 1

Proximity Modulated Thresholding for Hessian Matrix Feature Detection
Research Article

Greg Passmore*
*Corresponding Author
Greg Passmore, PassmoreLab, Austin, Texas, USA.

Submitted: 2025, Jan 18; Accepted: 2025, Feb 26; Published: 2025, Mar 03

Citation: Passmore, G. (2025). Proximity Modulated Thresholding for Hessian Matrix Feature Detection. J Math Techniques
Comput Math, 4(1), 01-06.

PassmoreLab, Austin, Texas, USA

Abstract
Our lab processes large volumes of multispectral drone data. We use feature identification for image alignment, object
recognition, and scene reconstruction. Traditional methods using the Hessian matrix detect features like corners or
blobs. This method is commonly used for color images, and the issues with changes in lighting and exposure are well
known. However, for our multispectral data, it proved especially problematic. Fixed thresholds worsened these issues,
causing inefficiencies and inaccuracies in feature matching and image alignment.

This paper presents a dynamic thresholding approach that adjusts the feature detection threshold based on the disparity
between the current and pre-defined feature count. It starts with an initial detection phase using a standard threshold to
establish a baseline. The threshold is then adjusted incrementally until the feature count converges towards the target.
This iterative refinement improves responsiveness and efficiency by considering the proximity between the current and
desired counts.

Experimental results demonstrate that adaptive thresholding reduces computational costs on the order of one magnitude
and can increase the granularity in feature detection processes, making it useful for complex image processing tasks.
This approach is particularly beneficial in environments with significant variability in multispectral environments, or
where image quality and lighting conditions present challenges.

Journal of Mathematical Techniques and Computational Mathematics
ISSN: 2834-7706

1. Significance
Feature identification is important for tasks such as image
alignment, object recognition, and scene reconstruction. One
common approach to feature identification involves using the
Hessian matrix to detect areas in an image that contain distinct
features, such as corners or blobs. However, the effectiveness
of feature detection can vary significantly based on image
characteristics like expo-sure, lighting conditions, and spectral
bands. This variation often results in different numbers of detected
features across images, which complicates alignment and other
comparative tasks.

2. Simple Hessian Matrix
Definitions
For an image, I, the intensity at pixel is denoted by I (x, y). The
Hessian matrix (x, y) at a pixel in terms of image intensity is

defined as:

3. Second-Order Derivatives
The second-order derivatives required for the Hessian matrix are
approximated using finite differ-ences:
Second Partial Derivative in

1

Proximity Modulated
Thresholding for Hessian
Matrix Feature Detection

Greg Passmore

Abstract

Our lab processes large volumes of multispectral
drone data. We use feature identiÞcation for image
alignment, object recognition, and scene reconstruc-
tion. Traditional methods using the Hessian matrix
detect features like corners or blobs. This method is
commonly used for color images, and the issues with
changes in lighting and exposure are well known.
However, for our multispectral data, it proved espe-
cially problematic. Fixed thresholds worsened these
issues, causing inefficiencies and inaccuracies in fea-
ture matching and image alignment.

This paper presents a dynamic thresholding ap-
proach that adjusts the feature detection threshold
based on the disparity between the current and pre-
deÞned feature count. It starts with an initial detec-
tion phase using a standard threshold to establish a
baseline. The threshold is then adjusted incremental-
ly until the feature count converges towards the tar-
get. This iterative reÞnement improves responsive-
ness and efficiency by considering the proximity be-
tween the current and desired counts.

Experimental results demonstrate that adaptive
thresholding reduces computational costs on the or-
der of one magnitude and can increase the granulari-
ty in feature detection processes, making it useful for
complex image processing tasks. This approach is
particularly beneÞcial in environments with signiÞ-
cant variability in multispectral environments, or
where image quality and lighting conditions present
challenges.

SigniÞcance

Feature identiÞcation is important for tasks such as
image alignment, object recognition, and scene re-
construction. One common approach to feature
identiÞcation involves using the Hessian matrix to
detect areas in an image that contain distinct fea-
tures, such as corners or blobs. However, the effec-
tiveness of feature detection can vary signiÞcantly
based on image characteristics like exposure, lighting
conditions, and spectral bands. This variation often
results in different numbers of detected features
across images, which complicates alignment and oth-
er comparative tasks.

Simple Hessian Matrix

DeÞnitions

For an image,  I , the intensity at pixel is denoted by
 I(x, y) . The Hessian matrix  (x, y) at a pixel in terms
of image intensity is deÞned as:

 
H(x, y) = [∂x2

∂ I2

∂y∂x
∂ I2

∂x∂y
∂ I2

∂y2
∂ I2]

Second-Order Derivatives

The second-order derivatives required for the Hess-
ian matrix are approximated using Þnite differences:

Second Partial Derivative in  x()∂x2
∂ I2 :

 
≈

∂x2

∂ I2
I(x + 1, y) − 2I(x, y) + I(x − 1, y)

Second Partial Derivative in  y()∂y2
∂ I2 :

 
≈

∂y2

∂ I2
I(x, y + 1) − 2I(x, y) + I(x, y − 1)

Mixed Partial Derivative:

Second Partial Derivative in

1

Proximity Modulated
Thresholding for Hessian
Matrix Feature Detection

Greg Passmore

Abstract

Our lab processes large volumes of multispectral
drone data. We use feature identiÞcation for image
alignment, object recognition, and scene reconstruc-
tion. Traditional methods using the Hessian matrix
detect features like corners or blobs. This method is
commonly used for color images, and the issues with
changes in lighting and exposure are well known.
However, for our multispectral data, it proved espe-
cially problematic. Fixed thresholds worsened these
issues, causing inefficiencies and inaccuracies in fea-
ture matching and image alignment.

This paper presents a dynamic thresholding ap-
proach that adjusts the feature detection threshold
based on the disparity between the current and pre-
deÞned feature count. It starts with an initial detec-
tion phase using a standard threshold to establish a
baseline. The threshold is then adjusted incremental-
ly until the feature count converges towards the tar-
get. This iterative reÞnement improves responsive-
ness and efficiency by considering the proximity be-
tween the current and desired counts.

Experimental results demonstrate that adaptive
thresholding reduces computational costs on the or-
der of one magnitude and can increase the granulari-
ty in feature detection processes, making it useful for
complex image processing tasks. This approach is
particularly beneÞcial in environments with signiÞ-
cant variability in multispectral environments, or
where image quality and lighting conditions present
challenges.

SigniÞcance

Feature identiÞcation is important for tasks such as
image alignment, object recognition, and scene re-
construction. One common approach to feature
identiÞcation involves using the Hessian matrix to
detect areas in an image that contain distinct fea-
tures, such as corners or blobs. However, the effec-
tiveness of feature detection can vary signiÞcantly
based on image characteristics like exposure, lighting
conditions, and spectral bands. This variation often
results in different numbers of detected features
across images, which complicates alignment and oth-
er comparative tasks.

Simple Hessian Matrix

DeÞnitions

For an image,  I , the intensity at pixel is denoted by
 I(x, y) . The Hessian matrix  (x, y) at a pixel in terms
of image intensity is deÞned as:

 
H(x, y) = [∂x2

∂ I2

∂y∂x
∂ I2

∂x∂y
∂ I2

∂y2
∂ I2]

Second-Order Derivatives

The second-order derivatives required for the Hess-
ian matrix are approximated using Þnite differences:

Second Partial Derivative in  x()∂x2
∂ I2 :

 
≈

∂x2

∂ I2
I(x + 1, y) − 2I(x, y) + I(x − 1, y)

Second Partial Derivative in  y()∂y2
∂ I2 :

 
≈

∂y2

∂ I2
I(x, y + 1) − 2I(x, y) + I(x, y − 1)

Mixed Partial Derivative:

1

Proximity Modulated
Thresholding for Hessian
Matrix Feature Detection

Greg Passmore

Abstract

Our lab processes large volumes of multispectral
drone data. We use feature identiÞcation for image
alignment, object recognition, and scene reconstruc-
tion. Traditional methods using the Hessian matrix
detect features like corners or blobs. This method is
commonly used for color images, and the issues with
changes in lighting and exposure are well known.
However, for our multispectral data, it proved espe-
cially problematic. Fixed thresholds worsened these
issues, causing inefficiencies and inaccuracies in fea-
ture matching and image alignment.

This paper presents a dynamic thresholding ap-
proach that adjusts the feature detection threshold
based on the disparity between the current and pre-
deÞned feature count. It starts with an initial detec-
tion phase using a standard threshold to establish a
baseline. The threshold is then adjusted incremental-
ly until the feature count converges towards the tar-
get. This iterative reÞnement improves responsive-
ness and efficiency by considering the proximity be-
tween the current and desired counts.

Experimental results demonstrate that adaptive
thresholding reduces computational costs on the or-
der of one magnitude and can increase the granulari-
ty in feature detection processes, making it useful for
complex image processing tasks. This approach is
particularly beneÞcial in environments with signiÞ-
cant variability in multispectral environments, or
where image quality and lighting conditions present
challenges.

SigniÞcance

Feature identiÞcation is important for tasks such as
image alignment, object recognition, and scene re-
construction. One common approach to feature
identiÞcation involves using the Hessian matrix to
detect areas in an image that contain distinct fea-
tures, such as corners or blobs. However, the effec-
tiveness of feature detection can vary signiÞcantly
based on image characteristics like exposure, lighting
conditions, and spectral bands. This variation often
results in different numbers of detected features
across images, which complicates alignment and oth-
er comparative tasks.

Simple Hessian Matrix

DeÞnitions

For an image,  I , the intensity at pixel is denoted by
 I(x, y) . The Hessian matrix  (x, y) at a pixel in terms
of image intensity is deÞned as:

 
H(x, y) = [∂x2

∂ I2

∂y∂x
∂ I2

∂x∂y
∂ I2

∂y2
∂ I2]

Second-Order Derivatives

The second-order derivatives required for the Hess-
ian matrix are approximated using Þnite differences:

Second Partial Derivative in  x()∂x2
∂ I2 :

 
≈

∂x2

∂ I2
I(x + 1, y) − 2I(x, y) + I(x − 1, y)

Second Partial Derivative in  y()∂y2
∂ I2 :

 
≈

∂y2

∂ I2
I(x, y + 1) − 2I(x, y) + I(x, y − 1)

Mixed Partial Derivative:
1

Proximity Modulated
Thresholding for Hessian
Matrix Feature Detection

Greg Passmore

Abstract

Our lab processes large volumes of multispectral
drone data. We use feature identiÞcation for image
alignment, object recognition, and scene reconstruc-
tion. Traditional methods using the Hessian matrix
detect features like corners or blobs. This method is
commonly used for color images, and the issues with
changes in lighting and exposure are well known.
However, for our multispectral data, it proved espe-
cially problematic. Fixed thresholds worsened these
issues, causing inefficiencies and inaccuracies in fea-
ture matching and image alignment.

This paper presents a dynamic thresholding ap-
proach that adjusts the feature detection threshold
based on the disparity between the current and pre-
deÞned feature count. It starts with an initial detec-
tion phase using a standard threshold to establish a
baseline. The threshold is then adjusted incremental-
ly until the feature count converges towards the tar-
get. This iterative reÞnement improves responsive-
ness and efficiency by considering the proximity be-
tween the current and desired counts.

Experimental results demonstrate that adaptive
thresholding reduces computational costs on the or-
der of one magnitude and can increase the granulari-
ty in feature detection processes, making it useful for
complex image processing tasks. This approach is
particularly beneÞcial in environments with signiÞ-
cant variability in multispectral environments, or
where image quality and lighting conditions present
challenges.

SigniÞcance

Feature identiÞcation is important for tasks such as
image alignment, object recognition, and scene re-
construction. One common approach to feature
identiÞcation involves using the Hessian matrix to
detect areas in an image that contain distinct fea-
tures, such as corners or blobs. However, the effec-
tiveness of feature detection can vary signiÞcantly
based on image characteristics like exposure, lighting
conditions, and spectral bands. This variation often
results in different numbers of detected features
across images, which complicates alignment and oth-
er comparative tasks.

Simple Hessian Matrix

DeÞnitions

For an image,  I , the intensity at pixel is denoted by
 I(x, y) . The Hessian matrix  (x, y) at a pixel in terms
of image intensity is deÞned as:

 
H(x, y) = [∂x2

∂ I2

∂y∂x
∂ I2

∂x∂y
∂ I2

∂y2
∂ I2]

Second-Order Derivatives

The second-order derivatives required for the Hess-
ian matrix are approximated using Þnite differences:

Second Partial Derivative in  x()∂x2
∂ I2 :

 
≈

∂x2

∂ I2
I(x + 1, y) − 2I(x, y) + I(x − 1, y)

Second Partial Derivative in  y()∂y2
∂ I2 :

 
≈

∂y2

∂ I2
I(x, y + 1) − 2I(x, y) + I(x, y − 1)

Mixed Partial Derivative:

1

Proximity Modulated
Thresholding for Hessian
Matrix Feature Detection

Greg Passmore

Abstract

Our lab processes large volumes of multispectral
drone data. We use feature identiÞcation for image
alignment, object recognition, and scene reconstruc-
tion. Traditional methods using the Hessian matrix
detect features like corners or blobs. This method is
commonly used for color images, and the issues with
changes in lighting and exposure are well known.
However, for our multispectral data, it proved espe-
cially problematic. Fixed thresholds worsened these
issues, causing inefficiencies and inaccuracies in fea-
ture matching and image alignment.

This paper presents a dynamic thresholding ap-
proach that adjusts the feature detection threshold
based on the disparity between the current and pre-
deÞned feature count. It starts with an initial detec-
tion phase using a standard threshold to establish a
baseline. The threshold is then adjusted incremental-
ly until the feature count converges towards the tar-
get. This iterative reÞnement improves responsive-
ness and efficiency by considering the proximity be-
tween the current and desired counts.

Experimental results demonstrate that adaptive
thresholding reduces computational costs on the or-
der of one magnitude and can increase the granulari-
ty in feature detection processes, making it useful for
complex image processing tasks. This approach is
particularly beneÞcial in environments with signiÞ-
cant variability in multispectral environments, or
where image quality and lighting conditions present
challenges.

SigniÞcance

Feature identiÞcation is important for tasks such as
image alignment, object recognition, and scene re-
construction. One common approach to feature
identiÞcation involves using the Hessian matrix to
detect areas in an image that contain distinct fea-
tures, such as corners or blobs. However, the effec-
tiveness of feature detection can vary signiÞcantly
based on image characteristics like exposure, lighting
conditions, and spectral bands. This variation often
results in different numbers of detected features
across images, which complicates alignment and oth-
er comparative tasks.

Simple Hessian Matrix

DeÞnitions

For an image,  I , the intensity at pixel is denoted by
 I(x, y) . The Hessian matrix  (x, y) at a pixel in terms
of image intensity is deÞned as:

 
H(x, y) = [∂x2

∂ I2

∂y∂x
∂ I2

∂x∂y
∂ I2

∂y2
∂ I2]

Second-Order Derivatives

The second-order derivatives required for the Hess-
ian matrix are approximated using Þnite differences:

Second Partial Derivative in  x()∂x2
∂ I2 :

 
≈

∂x2

∂ I2
I(x + 1, y) − 2I(x, y) + I(x − 1, y)

Second Partial Derivative in  y()∂y2
∂ I2 :

 
≈

∂y2

∂ I2
I(x, y + 1) − 2I(x, y) + I(x, y − 1)

Mixed Partial Derivative:

J Math Techniques Comput Math, 2025 Volume 4 | Issue 1 | 2

Mixed Partial Derivative:

2

 ()∂x∂y
∂ I2 and  ()∂y∂x

∂ I2 , which are equal by Schwarz's theo-
rem by the symmetry of the second derivatives:

 
∂x∂y

∂ I2

≈ (I(x + 1, y + 1) − I(x − 1, y + 1)
4
1

− I(x + 1, y − 1) + I(x − 1, y − 1))

Hessian Matrix Determinant

The determinant of the Hessian matrix  H at pixel
 (x, y) is given by:

 
det(H(x, y)) = −(

∂x2

∂ I2) (
∂y2

∂ I2) (
∂x∂y

∂ I2)
2

Interest Point Detection

Interest points are then detected by applying a
threshold  θ to det(H(x, y)):

 If det(H(x, y)) > θ, then (x, y) is an interest point

This mathematical formulation helps in understand-
ing the underlying computations and can be directly
translated into algorithms for processing images to
detect features or interest points based on changes in
local curvature represented by the Hessian matrix.

Scale Invariance

It is possible to extend the simple Hessian Matrix to
become scale invariant. Let’s take a look at the ex-
tended version.

The scale invariant Hessian Matrix, H can be written
as:

 
H =

∂x2
∂ D2

∂x∂y
∂ D2

∂x∂σ
∂ D2

∂x∂y
∂ D2

∂y2
∂ D2

∂y∂σ
∂ D2

∂x∂σ
∂ D2

∂y∂σ
∂ D2

∂σ2
∂ D2

To eliminate the keypoints at the edges, the ei-
genvalues  λ , λ , λ1 2 3 of H are computed. A point is
discarded if:

 min λ , λ , λ ×(∣ 1∣ ∣ 2∣ ∣ 3∣) r < max λ , λ , λ(∣ 1∣ ∣ 2∣ ∣ 3∣)

Where r is a constant, used to decide the ratio be-
tween the smallest and largest eigenvalues.

Orientation Assignment

An orientation is assigned to each keypoint to
achieve invariance to image rotation. The local image
gradient directions are sampled around each key-
point, and a histogram is formed from the gradient
orientations.

Given a keypoint located at (x,y) in image I, and we
let L(x,y,𝝈𝝈) with an orientation of 𝜃𝜃(x,y) be the scale-
space representation (i.e., the image convolved with a
Gaussian kernel of standard deviation 𝝈𝝈) of I.

The gradient magnitude M(x,y) and the orientation
𝜃𝜃(x,y) at each image point in a neighboring region
around the keypoint can be calculated as follows:

 

M(x, y) = +(
∂x

∂L)
2

(
∂y

∂L)
2

θ(x, y) = tan−1 (
∂x
∂L

∂y
∂L)

A histogram is then formed of the gradient orienta-
tions. Each sample in the neighborhood contributes
to the histogram with a weight equal to its gradient
magnitude. The histogram could be formed over 36
bins covering the 360-degree range of orientations.
The highest peak in the histogram is detected, and
any other local peak that is within 80% of the high-
est peak is also considered to specify an orientation.
This leads to the assignment of one or more orienta-
tions  θkeypoint to each keypoint.

Keypoint Descriptor

Finally, local image gradients are measured at the se-
lected scale in the region around each keypoint.

 and

2

 ()∂x∂y
∂ I2 and  ()∂y∂x

∂ I2 , which are equal by Schwarz's theo-
rem by the symmetry of the second derivatives:

 
∂x∂y

∂ I2

≈ (I(x + 1, y + 1) − I(x − 1, y + 1)
4
1

− I(x + 1, y − 1) + I(x − 1, y − 1))

Hessian Matrix Determinant

The determinant of the Hessian matrix  H at pixel
 (x, y) is given by:

 
det(H(x, y)) = −(

∂x2

∂ I2) (
∂y2

∂ I2) (
∂x∂y

∂ I2)
2

Interest Point Detection

Interest points are then detected by applying a
threshold  θ to det(H(x, y)):

 If det(H(x, y)) > θ, then (x, y) is an interest point

This mathematical formulation helps in understand-
ing the underlying computations and can be directly
translated into algorithms for processing images to
detect features or interest points based on changes in
local curvature represented by the Hessian matrix.

Scale Invariance

It is possible to extend the simple Hessian Matrix to
become scale invariant. Let’s take a look at the ex-
tended version.

The scale invariant Hessian Matrix, H can be written
as:

 
H =

∂x2
∂ D2

∂x∂y
∂ D2

∂x∂σ
∂ D2

∂x∂y
∂ D2

∂y2
∂ D2

∂y∂σ
∂ D2

∂x∂σ
∂ D2

∂y∂σ
∂ D2

∂σ2
∂ D2

To eliminate the keypoints at the edges, the ei-
genvalues  λ , λ , λ1 2 3 of H are computed. A point is
discarded if:

 min λ , λ , λ ×(∣ 1∣ ∣ 2∣ ∣ 3∣) r < max λ , λ , λ(∣ 1∣ ∣ 2∣ ∣ 3∣)

Where r is a constant, used to decide the ratio be-
tween the smallest and largest eigenvalues.

Orientation Assignment

An orientation is assigned to each keypoint to
achieve invariance to image rotation. The local image
gradient directions are sampled around each key-
point, and a histogram is formed from the gradient
orientations.

Given a keypoint located at (x,y) in image I, and we
let L(x,y,𝝈𝝈) with an orientation of 𝜃𝜃(x,y) be the scale-
space representation (i.e., the image convolved with a
Gaussian kernel of standard deviation 𝝈𝝈) of I.

The gradient magnitude M(x,y) and the orientation
𝜃𝜃(x,y) at each image point in a neighboring region
around the keypoint can be calculated as follows:

 

M(x, y) = +(
∂x

∂L)
2

(
∂y

∂L)
2

θ(x, y) = tan−1 (
∂x
∂L

∂y
∂L)

A histogram is then formed of the gradient orienta-
tions. Each sample in the neighborhood contributes
to the histogram with a weight equal to its gradient
magnitude. The histogram could be formed over 36
bins covering the 360-degree range of orientations.
The highest peak in the histogram is detected, and
any other local peak that is within 80% of the high-
est peak is also considered to specify an orientation.
This leads to the assignment of one or more orienta-
tions  θkeypoint to each keypoint.

Keypoint Descriptor

Finally, local image gradients are measured at the se-
lected scale in the region around each keypoint.

, which are equal by Schwarz's theorem by the
symmetry of the second derivatives:

4. Hessian Matrix Determinant
The determinant of the Hessian matrix H at pixel (x, y) is given by:

5. Interest Point Detection
Interest points are then detected by applying a threshold θ to
det(H(x, y)):

If det(H(x, y)) > θ, then (x, y) is an interest point

This mathematical formulation helps in understanding the
underlying computations and can be directly translated into
algorithms for processing images to detect features or interest
points based on changes in local curvature represented by the
Hessian matrix.

6. Scale Invariance
It is possible to extend the simple Hessian Matrix to become scale
invariant. Let’s take a look at the extended version.

The scale invariant Hessian Matrix, H can be written as:

To eliminate the keypoints at the edges, the eigenvalues λ1, λ2, λ3 of
H are computed. A point is discarded if:

min (∣λ1∣ , ∣λ2∣ , ∣λ3∣) × r < max (∣λ1∣ , ∣λ2∣ , ∣λ3∣)

Where r is a constant, used to decide the ratio between the smallest
and largest eigenvalues.

7. Orientation Assignment
An orientation is assigned to each keypoint to achieve invariance
to image rotation. The local image gradient directions are sampled
around each keypoint, and a histogram is formed from the gradient
orientations.

Given a keypoint located at (x,y) in image I, and we let L(x,y,𝝈)
with an orientation of 𝜃(x,y) be the scale space representation (i.e.,
the image convolved with a Gaussian kernel of standard deviation

𝝈) of I.

The gradient magnitude M(x,y) and the orientation 𝜃(x,y) at each
image point in a neighboring region around the keypoint can be
calculated as follows:

A histogram is then formed of the gradient orientations. Each
sample in the neighborhood contributes to the histogram with a
weight equal to its gradient magnitude. The histogram could be
formed over 36 bins covering the 360-degree range of orientations.
The highest peak in the histogram is detected, and any other local
peak that is within 80% of the highest peak is also considered to
specify an orientation. This leads to the assignment of one or more
orientations θkeypoint to each keypoint.

8. Keypoint Descriptor
Finally, local image gradients are measured at the selected scale
in the region around each keypoint. These are then transformed
into a descriptor that allows for significant levels of local shape
distortion and change in illumination.

While the descriptor is mainly computed through algorithmic
steps, the underlying mathematics involves capturing local image
gradients in a region around each keypoint. These gradients
are then transformed into a more stable form that serves as the
descriptor. Here is an outline of the mathematical foundations of
this step:

As above, let L(x,y,𝜎) be the scale space representation of the
image at the keypoint's scale, and consider a d × d region around
the keypoint. Typically, d = 16. This region around a keypoint
serves as the local area where gradient magnitudes and orientations
are computed for feature descriptor creation. The choice of d
determines the extent of the local neighborhood and is critical for
capturing sufficient detail while also allowing for generalization.
In standard implementations of SIFT, d = 16, which means a 16 ×
16 square region is examined around each keypoint.

The d × d region is further divided into smaller regions, often 4
× 4, and for each of these sub-regions, an orientation histogram
is generated. The orientation histogram is typically constructed
with 8 bins, capturing the frequency of occurrence of gradient
orientations in the 4×4 sub-region. Each pixel's gradient within
these sub-regions contributes to these histograms.

Let's look at representing the 16×16 region and the smaller 4×4
regions:

For the 16×16 region:

2

 ()∂x∂y
∂ I2 and  ()∂y∂x

∂ I2 , which are equal by Schwarz's theo-
rem by the symmetry of the second derivatives:

 
∂x∂y

∂ I2

≈ (I(x + 1, y + 1) − I(x − 1, y + 1)
4
1

− I(x + 1, y − 1) + I(x − 1, y − 1))

Hessian Matrix Determinant

The determinant of the Hessian matrix  H at pixel
 (x, y) is given by:

 
det(H(x, y)) = −(

∂x2

∂ I2) (
∂y2

∂ I2) (
∂x∂y

∂ I2)
2

Interest Point Detection

Interest points are then detected by applying a
threshold  θ to det(H(x, y)):

 If det(H(x, y)) > θ, then (x, y) is an interest point

This mathematical formulation helps in understand-
ing the underlying computations and can be directly
translated into algorithms for processing images to
detect features or interest points based on changes in
local curvature represented by the Hessian matrix.

Scale Invariance

It is possible to extend the simple Hessian Matrix to
become scale invariant. Let’s take a look at the ex-
tended version.

The scale invariant Hessian Matrix, H can be written
as:

 
H =

∂x2
∂ D2

∂x∂y
∂ D2

∂x∂σ
∂ D2

∂x∂y
∂ D2

∂y2
∂ D2

∂y∂σ
∂ D2

∂x∂σ
∂ D2

∂y∂σ
∂ D2

∂σ2
∂ D2

To eliminate the keypoints at the edges, the ei-
genvalues  λ , λ , λ1 2 3 of H are computed. A point is
discarded if:

 min λ , λ , λ ×(∣ 1∣ ∣ 2∣ ∣ 3∣) r < max λ , λ , λ(∣ 1∣ ∣ 2∣ ∣ 3∣)

Where r is a constant, used to decide the ratio be-
tween the smallest and largest eigenvalues.

Orientation Assignment

An orientation is assigned to each keypoint to
achieve invariance to image rotation. The local image
gradient directions are sampled around each key-
point, and a histogram is formed from the gradient
orientations.

Given a keypoint located at (x,y) in image I, and we
let L(x,y,𝝈𝝈) with an orientation of 𝜃𝜃(x,y) be the scale-
space representation (i.e., the image convolved with a
Gaussian kernel of standard deviation 𝝈𝝈) of I.

The gradient magnitude M(x,y) and the orientation
𝜃𝜃(x,y) at each image point in a neighboring region
around the keypoint can be calculated as follows:

 

M(x, y) = +(
∂x

∂L)
2

(
∂y

∂L)
2

θ(x, y) = tan−1 (
∂x
∂L

∂y
∂L)

A histogram is then formed of the gradient orienta-
tions. Each sample in the neighborhood contributes
to the histogram with a weight equal to its gradient
magnitude. The histogram could be formed over 36
bins covering the 360-degree range of orientations.
The highest peak in the histogram is detected, and
any other local peak that is within 80% of the high-
est peak is also considered to specify an orientation.
This leads to the assignment of one or more orienta-
tions  θkeypoint to each keypoint.

Keypoint Descriptor

Finally, local image gradients are measured at the se-
lected scale in the region around each keypoint.

2

 ()∂x∂y
∂ I2 and  ()∂y∂x

∂ I2 , which are equal by Schwarz's theo-
rem by the symmetry of the second derivatives:

 
∂x∂y

∂ I2

≈ (I(x + 1, y + 1) − I(x − 1, y + 1)
4
1

− I(x + 1, y − 1) + I(x − 1, y − 1))

Hessian Matrix Determinant

The determinant of the Hessian matrix  H at pixel
 (x, y) is given by:

 
det(H(x, y)) = −(

∂x2

∂ I2) (
∂y2

∂ I2) (
∂x∂y

∂ I2)
2

Interest Point Detection

Interest points are then detected by applying a
threshold  θ to det(H(x, y)):

 If det(H(x, y)) > θ, then (x, y) is an interest point

This mathematical formulation helps in understand-
ing the underlying computations and can be directly
translated into algorithms for processing images to
detect features or interest points based on changes in
local curvature represented by the Hessian matrix.

Scale Invariance

It is possible to extend the simple Hessian Matrix to
become scale invariant. Let’s take a look at the ex-
tended version.

The scale invariant Hessian Matrix, H can be written
as:

 
H =

∂x2
∂ D2

∂x∂y
∂ D2

∂x∂σ
∂ D2

∂x∂y
∂ D2

∂y2
∂ D2

∂y∂σ
∂ D2

∂x∂σ
∂ D2

∂y∂σ
∂ D2

∂σ2
∂ D2

To eliminate the keypoints at the edges, the ei-
genvalues  λ , λ , λ1 2 3 of H are computed. A point is
discarded if:

 min λ , λ , λ ×(∣ 1∣ ∣ 2∣ ∣ 3∣) r < max λ , λ , λ(∣ 1∣ ∣ 2∣ ∣ 3∣)

Where r is a constant, used to decide the ratio be-
tween the smallest and largest eigenvalues.

Orientation Assignment

An orientation is assigned to each keypoint to
achieve invariance to image rotation. The local image
gradient directions are sampled around each key-
point, and a histogram is formed from the gradient
orientations.

Given a keypoint located at (x,y) in image I, and we
let L(x,y,𝝈𝝈) with an orientation of 𝜃𝜃(x,y) be the scale-
space representation (i.e., the image convolved with a
Gaussian kernel of standard deviation 𝝈𝝈) of I.

The gradient magnitude M(x,y) and the orientation
𝜃𝜃(x,y) at each image point in a neighboring region
around the keypoint can be calculated as follows:

 

M(x, y) = +(
∂x

∂L)
2

(
∂y

∂L)
2

θ(x, y) = tan−1 (
∂x
∂L

∂y
∂L)

A histogram is then formed of the gradient orienta-
tions. Each sample in the neighborhood contributes
to the histogram with a weight equal to its gradient
magnitude. The histogram could be formed over 36
bins covering the 360-degree range of orientations.
The highest peak in the histogram is detected, and
any other local peak that is within 80% of the high-
est peak is also considered to specify an orientation.
This leads to the assignment of one or more orienta-
tions  θkeypoint to each keypoint.

Keypoint Descriptor

Finally, local image gradients are measured at the se-
lected scale in the region around each keypoint.

2

 ()∂x∂y
∂ I2 and  ()∂y∂x

∂ I2 , which are equal by Schwarz's theo-
rem by the symmetry of the second derivatives:

 
∂x∂y

∂ I2

≈ (I(x + 1, y + 1) − I(x − 1, y + 1)
4
1

− I(x + 1, y − 1) + I(x − 1, y − 1))

Hessian Matrix Determinant

The determinant of the Hessian matrix  H at pixel
 (x, y) is given by:

 
det(H(x, y)) = −(

∂x2

∂ I2) (
∂y2

∂ I2) (
∂x∂y

∂ I2)
2

Interest Point Detection

Interest points are then detected by applying a
threshold  θ to det(H(x, y)):

 If det(H(x, y)) > θ, then (x, y) is an interest point

This mathematical formulation helps in understand-
ing the underlying computations and can be directly
translated into algorithms for processing images to
detect features or interest points based on changes in
local curvature represented by the Hessian matrix.

Scale Invariance

It is possible to extend the simple Hessian Matrix to
become scale invariant. Let’s take a look at the ex-
tended version.

The scale invariant Hessian Matrix, H can be written
as:

 
H =

∂x2
∂ D2

∂x∂y
∂ D2

∂x∂σ
∂ D2

∂x∂y
∂ D2

∂y2
∂ D2

∂y∂σ
∂ D2

∂x∂σ
∂ D2

∂y∂σ
∂ D2

∂σ2
∂ D2

To eliminate the keypoints at the edges, the ei-
genvalues  λ , λ , λ1 2 3 of H are computed. A point is
discarded if:

 min λ , λ , λ ×(∣ 1∣ ∣ 2∣ ∣ 3∣) r < max λ , λ , λ(∣ 1∣ ∣ 2∣ ∣ 3∣)

Where r is a constant, used to decide the ratio be-
tween the smallest and largest eigenvalues.

Orientation Assignment

An orientation is assigned to each keypoint to
achieve invariance to image rotation. The local image
gradient directions are sampled around each key-
point, and a histogram is formed from the gradient
orientations.

Given a keypoint located at (x,y) in image I, and we
let L(x,y,𝝈𝝈) with an orientation of 𝜃𝜃(x,y) be the scale-
space representation (i.e., the image convolved with a
Gaussian kernel of standard deviation 𝝈𝝈) of I.

The gradient magnitude M(x,y) and the orientation
𝜃𝜃(x,y) at each image point in a neighboring region
around the keypoint can be calculated as follows:

 

M(x, y) = +(
∂x

∂L)
2

(
∂y

∂L)
2

θ(x, y) = tan−1 (
∂x
∂L

∂y
∂L)

A histogram is then formed of the gradient orienta-
tions. Each sample in the neighborhood contributes
to the histogram with a weight equal to its gradient
magnitude. The histogram could be formed over 36
bins covering the 360-degree range of orientations.
The highest peak in the histogram is detected, and
any other local peak that is within 80% of the high-
est peak is also considered to specify an orientation.
This leads to the assignment of one or more orienta-
tions  θkeypoint to each keypoint.

Keypoint Descriptor

Finally, local image gradients are measured at the se-
lected scale in the region around each keypoint.

2

 ()∂x∂y
∂ I2 and  ()∂y∂x

∂ I2 , which are equal by Schwarz's theo-
rem by the symmetry of the second derivatives:

 
∂x∂y

∂ I2

≈ (I(x + 1, y + 1) − I(x − 1, y + 1)
4
1

− I(x + 1, y − 1) + I(x − 1, y − 1))

Hessian Matrix Determinant

The determinant of the Hessian matrix  H at pixel
 (x, y) is given by:

 
det(H(x, y)) = −(

∂x2

∂ I2) (
∂y2

∂ I2) (
∂x∂y

∂ I2)
2

Interest Point Detection

Interest points are then detected by applying a
threshold  θ to det(H(x, y)):

 If det(H(x, y)) > θ, then (x, y) is an interest point

This mathematical formulation helps in understand-
ing the underlying computations and can be directly
translated into algorithms for processing images to
detect features or interest points based on changes in
local curvature represented by the Hessian matrix.

Scale Invariance

It is possible to extend the simple Hessian Matrix to
become scale invariant. Let’s take a look at the ex-
tended version.

The scale invariant Hessian Matrix, H can be written
as:

 
H =

∂x2
∂ D2

∂x∂y
∂ D2

∂x∂σ
∂ D2

∂x∂y
∂ D2

∂y2
∂ D2

∂y∂σ
∂ D2

∂x∂σ
∂ D2

∂y∂σ
∂ D2

∂σ2
∂ D2

To eliminate the keypoints at the edges, the ei-
genvalues  λ , λ , λ1 2 3 of H are computed. A point is
discarded if:

 min λ , λ , λ ×(∣ 1∣ ∣ 2∣ ∣ 3∣) r < max λ , λ , λ(∣ 1∣ ∣ 2∣ ∣ 3∣)

Where r is a constant, used to decide the ratio be-
tween the smallest and largest eigenvalues.

Orientation Assignment

An orientation is assigned to each keypoint to
achieve invariance to image rotation. The local image
gradient directions are sampled around each key-
point, and a histogram is formed from the gradient
orientations.

Given a keypoint located at (x,y) in image I, and we
let L(x,y,𝝈𝝈) with an orientation of 𝜃𝜃(x,y) be the scale-
space representation (i.e., the image convolved with a
Gaussian kernel of standard deviation 𝝈𝝈) of I.

The gradient magnitude M(x,y) and the orientation
𝜃𝜃(x,y) at each image point in a neighboring region
around the keypoint can be calculated as follows:

 

M(x, y) = +(
∂x

∂L)
2

(
∂y

∂L)
2

θ(x, y) = tan−1 (
∂x
∂L

∂y
∂L)

A histogram is then formed of the gradient orienta-
tions. Each sample in the neighborhood contributes
to the histogram with a weight equal to its gradient
magnitude. The histogram could be formed over 36
bins covering the 360-degree range of orientations.
The highest peak in the histogram is detected, and
any other local peak that is within 80% of the high-
est peak is also considered to specify an orientation.
This leads to the assignment of one or more orienta-
tions  θkeypoint to each keypoint.

Keypoint Descriptor

Finally, local image gradients are measured at the se-
lected scale in the region around each keypoint.

J Math Techniques Comput Math, 2025 Volume 4 | Issue 1 | 3

• Let d represent the side length of the 16×16 square region.
• The 16×16 region can be represented as:

For the 4×4 sub-regions within the 16×16 region:

• Let d d represent the side length of the 4×4 square sub-regions.
• Each 4×4 sub-region can be represented as:

Combining these notations, we can represent the entire process as:

Where:

• L(x, y, σ) represents the scale space representation of the image
at the keypoint's scale.
• (x, y) denote the keypoint coordinates.
• σ represents the scale.
• d is the side length of the 16×16 square region.
• dd is the side length of the 4×4 square sub-regions.
• PixelGradient(x + i, y + j) represents the gradient of the pixel
at coordinates (x + i, y + j).

9. Differences
The difference between the two representations of the Hessian
matrices lies primarily in their dimensions and the function
variables they are derived from, and the proximity modulation
works for either the simple or extended method. Let's discuss these
differences and their implications:

9.1. Function Variables:
• The first Hessian matrix H(x, y) is derived from a function I
that depends wholly on spatial variables x and x. This is typical
for basic image processing tasks where the image intensity I is a
function of spatial coordinates. This matrix is primarily used for
tasks such as feature detection in images, where the interest is in
spatial shifts.
• The second Hessian matrix uses a function D that depends
on spatial variables x , y , and a scale variable σ. This type of
formulation is often used in scale-invariant feature detection
methods, where the goal is to identify features across different
scales. The inclusion of σ allows D to represent a function like
the scale space representation of an image, commonly used in
algorithms like Scale-Invariant Feature Transforms.

9.2. Matrix Dimensions:
• The first matrix is a 2×2 matrix, which is suitable for two-

dimensional spatial analysis. This matrix evaluates the curvature
of the function I concerning the spatial dimensions alone.
• The second matrix is a 3×3 matrix, reflecting the addition of the
scale dimension σ . This larger matrix can evaluate changes not
only across spatial dimensions, but also how these changes vary
with scale. This is crucial for detecting features that are consistent
across different sizes or zoom levels of images.

9.3. Applications:
• The 2×2 Hessian matrix H(x, y) is adequate for image processing
tasks that require edge detection, corner detection, or other feature
detections where only spatial considerations are necessary.
• The 3×3 Hessian matrix is used in more complex scenarios
where scale invariance is important, such as in the detection of
features that need to be recognized at different scales, distances
or differing optical settings. This is essential for computer vision
applications involving multiscale analysis, like object recognition
across different cameras or optics.

9.4. Interpretation and Complexity:
• The complexity in interpreting the 2×2 matrix is lower since it
deals only with spatial derivatives, which are easier to compute
and visualize.
• The 3×3 matrix introduces additional complexity due to the
inclusion of derivatives regarding σ, indicating how the detected
features change as the image is progressively blurred (a common
method for simulating changes in scale).

The issue becomes determining if we need scale invariance. When
the images I1, I2, I3... are intrinsically at the same scale (independent
of resolution differences), we can skip this more involved process.
However, even minor shifts in scale can frustrate the later process
of determining associated points for image alignment.

10. Density of Features
When identifying associated features across different images,
achieving a consistent number of features for comparison is very
helpful. However, due to variations in density, exposure, lighting,
or detail, different images often yield differing counts of features
when processed with a uniform threshold. To address this, we
can dynamically adjust the threshold as necessary. This is also
helpful because using a static rate of adjustment can lead to slow
convergence. To improve efficiency, the rate at which the threshold
changes should be proportional to the discrepancy between the
current number of detected features and the desired count. The
dynamic adjustment accelerates convergence by adapting more
aggressively when the difference is larger, and more slowly as it
narrows.

11. Convergence Mechanism Using the Hessian Matrix
The convergence mechanism involves adaptively adjusting a
threshold to achieve a desired number of detected interest points
based on the Hessian determinant. The key to understanding the
convergence mechanism lies in the iterative adjustment process:

Initial Conditions: Start with an initial threshold for the

3

These are then transformed into a descriptor that al-
lows for signiÞcant levels of local shape distortion
and change in illumination.

While the descriptor is mainly computed through al-
gorithmic steps, the underlying mathematics involves
capturing local image gradients in a region around
each keypoint. These gradients are then transformed
into a more stable form that serves as the descriptor.
Here is an outline of the mathematical foundations
of this step:

As above, let L(x,y,𝜎𝜎) be the scale-space representa-
tion of the image at the keypoint's scale, and consid-
er a d × d region around the keypoint. Typically, d = 16.
This region around a keypoint serves as the local area
where gradient magnitudes and orientations are com-
puted for feature descriptor creation. The choice of d
determines the extent of the local neighborhood and
is critical for capturing sufficient detail while also al-
lowing for generalization. In standard implementa-
tions of SIFT, d = 16, which means a 16 × 16 square re-
gion is examined around each keypoint.

The d × d region is further divided into smaller re-
gions, often 4 × 4, and for each of these sub-regions,
an orientation histogram is generated. The orienta-
tion histogram is typically constructed with 8 bins,
capturing the frequency of occurrence of gradient
orientations in the 4×4 sub-region. Each pixel's gradi-
ent within these sub-regions contributes to these his-
tograms.

Let's look at representing the 16×16 region and the
smaller 4×4 regions:

For the 16×16 region:

• Let  d represent the side length of the 16×16 square
region.

• The 16×16 region can be represented as:

 i=1

∑
d

j=1

∑
d

For the 4×4 sub-regions within the 16×16 region:

• Let  dd represent the side length of the 4×4 square
sub-regions.

• Each 4×4 sub-region can be represented as:

 k=1

∑
dd

l=1

∑
dd

Combining these notations, we can represent the en-
tire process as:

 

L(x, y, σ) =

 PixelGradient (x + i, y + j)
i=1

∑
d

j=1

∑
d (

k=1

∑
dd

l=1

∑
dd)

Where:

•  L(x, y, σ) represents the scale-space representation
of the image at the keypoint's scale.

•  (x, y) denote the keypoint coordinates.
•  σ represents the scale.
•  d is the side length of the 16×16 square region.
•  dd is the side length of the 4×4 square sub-regions.
•  PixelGradient(x + i, y + j) represents the gradient

of the pixel at coordinates  (x + i, y + j).

Differences

The difference between the two representations of
the Hessian matrices lies primarily in their dimen-
sions and the function variables they are derived
from, and the proximity modulation works for either
the simple or extended method. Let's discuss these
differences and their implications:

Function Variables:

• The Þrst Hessian matrix  H(x, y) is derived from a
function  I that depends wholly on spatial variables
 x and  x . This is typical for basic image processing
tasks where the image intensity  I is a function of
spatial coordinates. This matrix is primarily used
for tasks such as feature detection in images, where
the interest is in spatial shifts.

• The second Hessian matrix uses a function  D that
depends on spatial variables  x, y , and a scale vari-

3

These are then transformed into a descriptor that al-
lows for signiÞcant levels of local shape distortion
and change in illumination.

While the descriptor is mainly computed through al-
gorithmic steps, the underlying mathematics involves
capturing local image gradients in a region around
each keypoint. These gradients are then transformed
into a more stable form that serves as the descriptor.
Here is an outline of the mathematical foundations
of this step:

As above, let L(x,y,𝜎𝜎) be the scale-space representa-
tion of the image at the keypoint's scale, and consid-
er a d × d region around the keypoint. Typically, d = 16.
This region around a keypoint serves as the local area
where gradient magnitudes and orientations are com-
puted for feature descriptor creation. The choice of d
determines the extent of the local neighborhood and
is critical for capturing sufficient detail while also al-
lowing for generalization. In standard implementa-
tions of SIFT, d = 16, which means a 16 × 16 square re-
gion is examined around each keypoint.

The d × d region is further divided into smaller re-
gions, often 4 × 4, and for each of these sub-regions,
an orientation histogram is generated. The orienta-
tion histogram is typically constructed with 8 bins,
capturing the frequency of occurrence of gradient
orientations in the 4×4 sub-region. Each pixel's gradi-
ent within these sub-regions contributes to these his-
tograms.

Let's look at representing the 16×16 region and the
smaller 4×4 regions:

For the 16×16 region:

• Let  d represent the side length of the 16×16 square
region.

• The 16×16 region can be represented as:

 i=1

∑
d

j=1

∑
d

For the 4×4 sub-regions within the 16×16 region:

• Let  dd represent the side length of the 4×4 square
sub-regions.

• Each 4×4 sub-region can be represented as:

 k=1

∑
dd

l=1

∑
dd

Combining these notations, we can represent the en-
tire process as:

 

L(x, y, σ) =

 PixelGradient (x + i, y + j)
i=1

∑
d

j=1

∑
d (

k=1

∑
dd

l=1

∑
dd)

Where:

•  L(x, y, σ) represents the scale-space representation
of the image at the keypoint's scale.

•  (x, y) denote the keypoint coordinates.
•  σ represents the scale.
•  d is the side length of the 16×16 square region.
•  dd is the side length of the 4×4 square sub-regions.
•  PixelGradient(x + i, y + j) represents the gradient

of the pixel at coordinates  (x + i, y + j).

Differences

The difference between the two representations of
the Hessian matrices lies primarily in their dimen-
sions and the function variables they are derived
from, and the proximity modulation works for either
the simple or extended method. Let's discuss these
differences and their implications:

Function Variables:

• The Þrst Hessian matrix  H(x, y) is derived from a
function  I that depends wholly on spatial variables
 x and  x . This is typical for basic image processing
tasks where the image intensity  I is a function of
spatial coordinates. This matrix is primarily used
for tasks such as feature detection in images, where
the interest is in spatial shifts.

• The second Hessian matrix uses a function  D that
depends on spatial variables  x, y , and a scale vari-

3

These are then transformed into a descriptor that al-
lows for signiÞcant levels of local shape distortion
and change in illumination.

While the descriptor is mainly computed through al-
gorithmic steps, the underlying mathematics involves
capturing local image gradients in a region around
each keypoint. These gradients are then transformed
into a more stable form that serves as the descriptor.
Here is an outline of the mathematical foundations
of this step:

As above, let L(x,y,𝜎𝜎) be the scale-space representa-
tion of the image at the keypoint's scale, and consid-
er a d × d region around the keypoint. Typically, d = 16.
This region around a keypoint serves as the local area
where gradient magnitudes and orientations are com-
puted for feature descriptor creation. The choice of d
determines the extent of the local neighborhood and
is critical for capturing sufficient detail while also al-
lowing for generalization. In standard implementa-
tions of SIFT, d = 16, which means a 16 × 16 square re-
gion is examined around each keypoint.

The d × d region is further divided into smaller re-
gions, often 4 × 4, and for each of these sub-regions,
an orientation histogram is generated. The orienta-
tion histogram is typically constructed with 8 bins,
capturing the frequency of occurrence of gradient
orientations in the 4×4 sub-region. Each pixel's gradi-
ent within these sub-regions contributes to these his-
tograms.

Let's look at representing the 16×16 region and the
smaller 4×4 regions:

For the 16×16 region:

• Let  d represent the side length of the 16×16 square
region.

• The 16×16 region can be represented as:

 i=1

∑
d

j=1

∑
d

For the 4×4 sub-regions within the 16×16 region:

• Let  dd represent the side length of the 4×4 square
sub-regions.

• Each 4×4 sub-region can be represented as:

 k=1

∑
dd

l=1

∑
dd

Combining these notations, we can represent the en-
tire process as:

 

L(x, y, σ) =

 PixelGradient (x + i, y + j)
i=1

∑
d

j=1

∑
d (

k=1

∑
dd

l=1

∑
dd)

Where:

•  L(x, y, σ) represents the scale-space representation
of the image at the keypoint's scale.

•  (x, y) denote the keypoint coordinates.
•  σ represents the scale.
•  d is the side length of the 16×16 square region.
•  dd is the side length of the 4×4 square sub-regions.
•  PixelGradient(x + i, y + j) represents the gradient

of the pixel at coordinates  (x + i, y + j).

Differences

The difference between the two representations of
the Hessian matrices lies primarily in their dimen-
sions and the function variables they are derived
from, and the proximity modulation works for either
the simple or extended method. Let's discuss these
differences and their implications:

Function Variables:

• The Þrst Hessian matrix  H(x, y) is derived from a
function  I that depends wholly on spatial variables
 x and  x . This is typical for basic image processing
tasks where the image intensity  I is a function of
spatial coordinates. This matrix is primarily used
for tasks such as feature detection in images, where
the interest is in spatial shifts.

• The second Hessian matrix uses a function  D that
depends on spatial variables  x, y , and a scale vari-

J Math Techniques Comput Math, 2025 Volume 4 | Issue 1 | 4

determinant of the Hessian matrix.

Detection and Counting: For each pixel (x, y) in the image,
compute the determinant of the Hessian matrix. Count the
number of pixels for which det(H(x, y)) > θ exceeds the threshold,
indicating potential interest points.

Adaptive Adjustment: Compare the current count of interest
points to the desired count. Based on the difference, adjust the
threshold:

• If the number of detected points is greater than N, increase the
threshold to make it harder for points to qualify as interest points:

• If count is less than N , decrease the threshold to allow more
points to qualify:

Here, Δθ represents a scaling factor for the threshold adjustment,
which may be refined each iteration.

Convergence Criterion: The process is repeated until the number
of detected points is close to N, or the changes in θ become
negligibly small, indicating convergence.

Abstraction: The iterative adjustment can be mathematically
expressed as:

where ± depends on whether count is greater than or less than N.

This method, then, dynamically fine-tunes the sensitivity of
interest point detection to achieve a target number of features,
balancing between sensitivity and specificity based on the image
content and the degree of feature detection needed. This approach
is particularly useful in applications where consistent feature
detection across varying image conditions is required.

12. Extending Convergence
The proximity modulated threshold holds potential across a wide
array of applications, particularly in scenarios where the goal of
an optimal fitness set or numeric convergence point is essential.
One example application lies in artificial intelligence (AI), where
the adjustment of hyperparameters, such as the learning rate or the
activation function (e.g., sigmoid), plays a pivotal role in model
optimization.

For now, however, let’s consider a scenario involving the
enhancement of the Hessian matrix through the application of

Gaussian functions. The Gaussian function reduces noise. One
way to determine its effectiveness is to measure repeatability of
the final feature set after Hessian matrix calculation. The Hessian
matrix characterizes the curvature of the image function's surface,
and our proximity modulation controls the convergence behavior
via iterative optimization. We can attack the noisy or erratic data
which introduces instability in the Hessian matrix estimation with
the Gaussian operator, minimizing suboptimal convergence or
divergence.

By incorporating proximity modulated thresholding techniques
inside the Gaussian function controlled by eventual feature
repeatability derived by the Hessian matrix computation, it
becomes possible to reduce the impact of image noise and increase
final result reliability. Said another way, the proximity modulated
threshold method can also dynamically adjust the Gaussian
weights based on the observed repeatability leading towards a
zero divergence from frame to frame. This adaptive thresholding
mechanism, then, can effectively filter out noise to focus on more
relevant image information, thereby improving the accuracy and
reliability of the Hessian matrix calculation by way of improvement
of the Gaussian function.

13. Gaussian Noise Easing
Here, we take a look at repeatedly factoring to converge on an
ideal Gaussian process.

The building of the kernel creation can be expressed as:

In this equation:

• kernel[y][x] represents the weight assigned to the pixel at position
(x, y) within the Gaussian kernel.
• σ denotes the standard deviation of the Gaussian distribution.
• radius =

6

 
kernel[y][x] =

e∑y =− radius ′
radius ∑x =− radius ′

radius −
2σ2

r +y′2 ′2

e−
2σ2

x +y2 2

In this equation:

•  kernel[y][x] represents the weight assigned to the
pixel at position  (x, y) within the Gaussian kernel.

•  σ denotes the standard deviation of the Gaussian
distribution.

•  radius = 2
size represents the radius of the kernel.

•  x and  y iterate over the spatial coordinates within
the kernel, ranging from  −radius to  radius.

• The numerator calculates the Gaussian weight for
the current pixel position  (x, y).

• The denominator represents the normalization
term, which is the sum of Gaussian weights over all
pixel positions within the kernel.

• The sum is computed over  y′ and, representing all
possible pixel positions within the kernel.

Application in X and Y

Next, we apply the Gaussian Þler to X and Y sepa-
rately.

Given an input matr ix  image(x, y) o f s ize
 width × height , and assuming a Gaussian kernel of
size  size × size with standard deviation  σ , the
method calculates the Þltered output matrix  
for each pixel as follows:

 

 output (x, y) =

 image (x + i, y + j) ⋅ kernel[i + radius][j + radius]
i=− radius

∑
radius

j=− radius

∑
radius

Where:

•  radius = 2
size represents the radius of the Gaussian

kernel.
•  kernel[i + radius][j + radius] denotes the value of

the Gaussian kernel at position  (i, j).
• The sums are taken over all possible offsets  i and  j ,

ranging from  −radius to  radius , effectively cover-
ing the entire kernel region around pixel  (x, y).

The Gaussian kernel weights are multiplied by the
corresponding pixel values within the kernel neigh-
borhood, and the resulting weighted sums are accu-
mulated to obtain the Þltered output for each pixel.

Crossproduct of X and Y

Next, we use the  xand  yresults to produce the deriva-
tives  Ixx ,  Iyy , and  Ixy . These derivatives are obtained
by squaring and multiplying the elements of the in-
put derivative matrices  Ix and  Iy . The Gaussian Þlter-
ing process helps to smooth and reÞne these deriva-
tives, which is useful in for our image processing
tasks such as edge detection and feature extraction.

Here's the mathematical explanation of the process:

Given input derivative matrices  I (x, y)x and  
of size  width × height , the method calculates the
product matrices  I (x, y)xx ,  I (x, y)yy , and  I (x, y)xy as
follows:

 
I (x, y) =xx (I (x +

i=−∞

∑
∞

j=−∞

∑
∞

x i, y + j)) ⋅2 kernel[i][j]

 
I (x, y) =yy (I (x +

i=−∞

∑
∞

j=−∞

∑
∞

y i, y + j)) ⋅2 kernel[i][j]

 
I (x, y) =xy I (x +

i=−∞

∑
∞

j=−∞

∑
∞

x i, y + j) ⋅ I (x +y i, y + j) ⋅ kernel[i][j]

Where  kernel[i][j] represents the value of the Gauss-
ian kernel at position  (i, j).

In these equations:

•  (x, y) represent the spatial coordinates of the out-
put matrices  Ixx,  Iyy, and  Ixy.

•  i and  j represent the spatial offsets within the
Gaussian kernel.

• The sums are taken over all possible offsets  i and  j ,
effectively spanning the entire image domain.

• The Gaussian kernel is applied to each pixel in the
input matrices, and the resulting weighted sums are

 represents the radius of the kernel.
• x and y iterate over the spatial coordinates within the kernel,
ranging from −radius to radius.
• The numerator calculates the Gaussian weight for the current
pixel position (x, y).
• The denominator represents the normalization term, which is the
sum of Gaussian weights over all pixel positions within the kernel.
• The sum is computed over y ′ and, representing all possible pixel
positions within the kernel.

14. Application in X and Y
Next, we apply the Gaussian filer to X and Y separately.

Given an input matrix image(x, y) of size width × height , and
assuming a Gaussian kernel of size size × size with standard
deviation σ , the method calculates the filtered output matrix
(x,y) for each pixel as follows:

5

• If the number of detected points  count is greater
than  N , increase the threshold to make it harder
for points to qualify as interest points:

 
θ = θ + Δθ × (

N

count − N)

• If  count is less than  N , decrease the threshold to
allow more points to qualify:

 
θ = θ − Δθ × (

N

N − count)

Here,  Δθ represents a scaling factor for the threshold
adjustment, which may be reÞned each iteration.

Convergence Criterion: The process is repeated
until the number of detected points is close to  N , or
the changes in  θ become negligibly small, indicating
convergence.

Abstraction:

The iterative adjustment can be mathematically ex-
pressed as:

 
θ =new θ ±old Δθ ×

N

count − N

where  ± depends on whether  count is greater than
or less than  N .

This method, then, dynamically Þne-tunes the sensi-
tivity of interest point detection to achieve a target
number of features, balancing between sensitivity
and speciÞcity based on the image content and the
degree of feature detection needed. This approach is
particularly useful in applications where consistent
feature detection across varying image conditions is
required.

Extending Convergence

The proximity modulated threshold holds potential
across a wide array of applications, particularly in

scenarios where the goal of an optimal Þtness set or
numeric convergence point is essential. One example
application lies in artiÞcial intelligence (AI), where
the adjustment of hyperparameters, such as the
learning rate or the activation function (e.g., sig-
moid), plays a pivotal role in model optimization.

For now, however, let’s consider a scenario involving
the enhancement of the Hessian matrix through the
application of Gaussian functions. The Gaussian
function reduces noise. One way to determine its ef-
fectiveness is to measure repeatability of the Þnal
feature set after Hessian matrix calculation. The Hes-
sian matrix characterizes the curvature of the image
function's surface, and our proximity modulation
controls the convergence behavior via iterative opti-
mization. We can attack the noisy or erratic data
which introduces instability in the Hessian matrix es-
timation with the Gaussian operator, minimizing
suboptimal convergence or divergence.

By incorporating proximity modulated thresholding
techniques inside the Gaussian function controlled
by eventual feature repeatability derived by the Hess-
ian matrix computation, it becomes possible to re-
duce the impact of image noise and increase Þnal re-
sult reliability. Said another way, the proximity modu-
lated threshold method can also dynamically adjust
the Gaussian weights based on the observed repeata-
bility leading towards a zero divergence from frame
to frame. This adaptive thresholding mechanism,
then, can effectively Þlter out noise to focus on more
relevant image information, thereby improving the
accuracy and reliability of the Hessian matrix calcula-
tion by way of improvement of the Gaussian func-
tion.

Gaussian Noise Easing

Here, we take a look at repeatedly factoring to con-
verge on an ideal Gaussian process.

The building of the kernel creation can be expressed
as:

5

• If the number of detected points  count is greater
than  N , increase the threshold to make it harder
for points to qualify as interest points:

 
θ = θ + Δθ × (

N

count − N)

• If  count is less than  N , decrease the threshold to
allow more points to qualify:

 
θ = θ − Δθ × (

N

N − count)

Here,  Δθ represents a scaling factor for the threshold
adjustment, which may be reÞned each iteration.

Convergence Criterion: The process is repeated
until the number of detected points is close to  N , or
the changes in  θ become negligibly small, indicating
convergence.

Abstraction:

The iterative adjustment can be mathematically ex-
pressed as:

 
θ =new θ ±old Δθ ×

N

count − N

where  ± depends on whether  count is greater than
or less than  N .

This method, then, dynamically Þne-tunes the sensi-
tivity of interest point detection to achieve a target
number of features, balancing between sensitivity
and speciÞcity based on the image content and the
degree of feature detection needed. This approach is
particularly useful in applications where consistent
feature detection across varying image conditions is
required.

Extending Convergence

The proximity modulated threshold holds potential
across a wide array of applications, particularly in

scenarios where the goal of an optimal Þtness set or
numeric convergence point is essential. One example
application lies in artiÞcial intelligence (AI), where
the adjustment of hyperparameters, such as the
learning rate or the activation function (e.g., sig-
moid), plays a pivotal role in model optimization.

For now, however, let’s consider a scenario involving
the enhancement of the Hessian matrix through the
application of Gaussian functions. The Gaussian
function reduces noise. One way to determine its ef-
fectiveness is to measure repeatability of the Þnal
feature set after Hessian matrix calculation. The Hes-
sian matrix characterizes the curvature of the image
function's surface, and our proximity modulation
controls the convergence behavior via iterative opti-
mization. We can attack the noisy or erratic data
which introduces instability in the Hessian matrix es-
timation with the Gaussian operator, minimizing
suboptimal convergence or divergence.

By incorporating proximity modulated thresholding
techniques inside the Gaussian function controlled
by eventual feature repeatability derived by the Hess-
ian matrix computation, it becomes possible to re-
duce the impact of image noise and increase Þnal re-
sult reliability. Said another way, the proximity modu-
lated threshold method can also dynamically adjust
the Gaussian weights based on the observed repeata-
bility leading towards a zero divergence from frame
to frame. This adaptive thresholding mechanism,
then, can effectively Þlter out noise to focus on more
relevant image information, thereby improving the
accuracy and reliability of the Hessian matrix calcula-
tion by way of improvement of the Gaussian func-
tion.

Gaussian Noise Easing

Here, we take a look at repeatedly factoring to con-
verge on an ideal Gaussian process.

The building of the kernel creation can be expressed
as:

5

• If the number of detected points  count is greater
than  N , increase the threshold to make it harder
for points to qualify as interest points:

 
θ = θ + Δθ × (

N

count − N)

• If  count is less than  N , decrease the threshold to
allow more points to qualify:

 
θ = θ − Δθ × (

N

N − count)

Here,  Δθ represents a scaling factor for the threshold
adjustment, which may be reÞned each iteration.

Convergence Criterion: The process is repeated
until the number of detected points is close to  N , or
the changes in  θ become negligibly small, indicating
convergence.

Abstraction:

The iterative adjustment can be mathematically ex-
pressed as:

 
θ =new θ ±old Δθ ×

N

count − N

where  ± depends on whether  count is greater than
or less than  N .

This method, then, dynamically Þne-tunes the sensi-
tivity of interest point detection to achieve a target
number of features, balancing between sensitivity
and speciÞcity based on the image content and the
degree of feature detection needed. This approach is
particularly useful in applications where consistent
feature detection across varying image conditions is
required.

Extending Convergence

The proximity modulated threshold holds potential
across a wide array of applications, particularly in

scenarios where the goal of an optimal Þtness set or
numeric convergence point is essential. One example
application lies in artiÞcial intelligence (AI), where
the adjustment of hyperparameters, such as the
learning rate or the activation function (e.g., sig-
moid), plays a pivotal role in model optimization.

For now, however, let’s consider a scenario involving
the enhancement of the Hessian matrix through the
application of Gaussian functions. The Gaussian
function reduces noise. One way to determine its ef-
fectiveness is to measure repeatability of the Þnal
feature set after Hessian matrix calculation. The Hes-
sian matrix characterizes the curvature of the image
function's surface, and our proximity modulation
controls the convergence behavior via iterative opti-
mization. We can attack the noisy or erratic data
which introduces instability in the Hessian matrix es-
timation with the Gaussian operator, minimizing
suboptimal convergence or divergence.

By incorporating proximity modulated thresholding
techniques inside the Gaussian function controlled
by eventual feature repeatability derived by the Hess-
ian matrix computation, it becomes possible to re-
duce the impact of image noise and increase Þnal re-
sult reliability. Said another way, the proximity modu-
lated threshold method can also dynamically adjust
the Gaussian weights based on the observed repeata-
bility leading towards a zero divergence from frame
to frame. This adaptive thresholding mechanism,
then, can effectively Þlter out noise to focus on more
relevant image information, thereby improving the
accuracy and reliability of the Hessian matrix calcula-
tion by way of improvement of the Gaussian func-
tion.

Gaussian Noise Easing

Here, we take a look at repeatedly factoring to con-
verge on an ideal Gaussian process.

The building of the kernel creation can be expressed
as:

6

 
kernel[y][x] =

e∑y =− radius ′
radius ∑x =− radius ′

radius −
2σ2

r +y′2 ′2

e−
2σ2

x +y2 2

In this equation:

•  kernel[y][x] represents the weight assigned to the
pixel at position  (x, y) within the Gaussian kernel.

•  σ denotes the standard deviation of the Gaussian
distribution.

•  radius = 2
size represents the radius of the kernel.

•  x and  y iterate over the spatial coordinates within
the kernel, ranging from  −radius to  radius.

• The numerator calculates the Gaussian weight for
the current pixel position  (x, y).

• The denominator represents the normalization
term, which is the sum of Gaussian weights over all
pixel positions within the kernel.

• The sum is computed over  y′ and, representing all
possible pixel positions within the kernel.

Application in X and Y

Next, we apply the Gaussian Þler to X and Y sepa-
rately.

Given an input matr ix  image(x, y) o f s ize
 width × height , and assuming a Gaussian kernel of
size  size × size with standard deviation  σ , the
method calculates the Þltered output matrix  
for each pixel as follows:

 

 output (x, y) =

 image (x + i, y + j) ⋅ kernel[i + radius][j + radius]
i=− radius

∑
radius

j=− radius

∑
radius

Where:

•  radius = 2
size represents the radius of the Gaussian

kernel.
•  kernel[i + radius][j + radius] denotes the value of

the Gaussian kernel at position  (i, j).
• The sums are taken over all possible offsets  i and  j ,

ranging from  −radius to  radius , effectively cover-
ing the entire kernel region around pixel  (x, y).

The Gaussian kernel weights are multiplied by the
corresponding pixel values within the kernel neigh-
borhood, and the resulting weighted sums are accu-
mulated to obtain the Þltered output for each pixel.

Crossproduct of X and Y

Next, we use the  xand  yresults to produce the deriva-
tives  Ixx ,  Iyy , and  Ixy . These derivatives are obtained
by squaring and multiplying the elements of the in-
put derivative matrices  Ix and  Iy . The Gaussian Þlter-
ing process helps to smooth and reÞne these deriva-
tives, which is useful in for our image processing
tasks such as edge detection and feature extraction.

Here's the mathematical explanation of the process:

Given input derivative matrices  I (x, y)x and  
of size  width × height , the method calculates the
product matrices  I (x, y)xx ,  I (x, y)yy , and  I (x, y)xy as
follows:

 
I (x, y) =xx (I (x +

i=−∞

∑
∞

j=−∞

∑
∞

x i, y + j)) ⋅2 kernel[i][j]

 
I (x, y) =yy (I (x +

i=−∞

∑
∞

j=−∞

∑
∞

y i, y + j)) ⋅2 kernel[i][j]

 
I (x, y) =xy I (x +

i=−∞

∑
∞

j=−∞

∑
∞

x i, y + j) ⋅ I (x +y i, y + j) ⋅ kernel[i][j]

Where  kernel[i][j] represents the value of the Gauss-
ian kernel at position  (i, j).

In these equations:

•  (x, y) represent the spatial coordinates of the out-
put matrices  Ixx,  Iyy, and  Ixy.

•  i and  j represent the spatial offsets within the
Gaussian kernel.

• The sums are taken over all possible offsets  i and  j ,
effectively spanning the entire image domain.

• The Gaussian kernel is applied to each pixel in the
input matrices, and the resulting weighted sums are

J Math Techniques Comput Math, 2025 Volume 4 | Issue 1 | 5

Where:

• radius =

6

 
kernel[y][x] =

e∑y =− radius ′
radius ∑x =− radius ′

radius −
2σ2

r +y′2 ′2

e−
2σ2

x +y2 2

In this equation:

•  kernel[y][x] represents the weight assigned to the
pixel at position  (x, y) within the Gaussian kernel.

•  σ denotes the standard deviation of the Gaussian
distribution.

•  radius = 2
size represents the radius of the kernel.

•  x and  y iterate over the spatial coordinates within
the kernel, ranging from  −radius to  radius.

• The numerator calculates the Gaussian weight for
the current pixel position  (x, y).

• The denominator represents the normalization
term, which is the sum of Gaussian weights over all
pixel positions within the kernel.

• The sum is computed over  y′ and, representing all
possible pixel positions within the kernel.

Application in X and Y

Next, we apply the Gaussian Þler to X and Y sepa-
rately.

Given an input matr ix  image(x, y) o f s ize
 width × height , and assuming a Gaussian kernel of
size  size × size with standard deviation  σ , the
method calculates the Þltered output matrix  
for each pixel as follows:

 

 output (x, y) =

 image (x + i, y + j) ⋅ kernel[i + radius][j + radius]
i=− radius

∑
radius

j=− radius

∑
radius

Where:

•  radius = 2
size represents the radius of the Gaussian

kernel.
•  kernel[i + radius][j + radius] denotes the value of

the Gaussian kernel at position  (i, j).
• The sums are taken over all possible offsets  i and  j ,

ranging from  −radius to  radius , effectively cover-
ing the entire kernel region around pixel  (x, y).

The Gaussian kernel weights are multiplied by the
corresponding pixel values within the kernel neigh-
borhood, and the resulting weighted sums are accu-
mulated to obtain the Þltered output for each pixel.

Crossproduct of X and Y

Next, we use the  xand  yresults to produce the deriva-
tives  Ixx ,  Iyy , and  Ixy . These derivatives are obtained
by squaring and multiplying the elements of the in-
put derivative matrices  Ix and  Iy . The Gaussian Þlter-
ing process helps to smooth and reÞne these deriva-
tives, which is useful in for our image processing
tasks such as edge detection and feature extraction.

Here's the mathematical explanation of the process:

Given input derivative matrices  I (x, y)x and  
of size  width × height , the method calculates the
product matrices  I (x, y)xx ,  I (x, y)yy , and  I (x, y)xy as
follows:

 
I (x, y) =xx (I (x +

i=−∞

∑
∞

j=−∞

∑
∞

x i, y + j)) ⋅2 kernel[i][j]

 
I (x, y) =yy (I (x +

i=−∞

∑
∞

j=−∞

∑
∞

y i, y + j)) ⋅2 kernel[i][j]

 
I (x, y) =xy I (x +

i=−∞

∑
∞

j=−∞

∑
∞

x i, y + j) ⋅ I (x +y i, y + j) ⋅ kernel[i][j]

Where  kernel[i][j] represents the value of the Gauss-
ian kernel at position  (i, j).

In these equations:

•  (x, y) represent the spatial coordinates of the out-
put matrices  Ixx,  Iyy, and  Ixy.

•  i and  j represent the spatial offsets within the
Gaussian kernel.

• The sums are taken over all possible offsets  i and  j ,
effectively spanning the entire image domain.

• The Gaussian kernel is applied to each pixel in the
input matrices, and the resulting weighted sums are

 represents the radius of the Gaussian kernel.
• kernel[i + radius][j + radius] denotes the value of the Gaussian
kernel at position (i, j).
• The sums are taken over all possible offsets i and j , ranging from
− radius to r adius , effectively covering the entire kernel region
around pixel (x, y).

The Gaussian kernel weights are multiplied by the corresponding
pixel values within the kernel neighborhood, and the resulting
weighted sums are accumulated to obtain the filtered output for
each pixel.

15. Crossproduct of X and Y
Next, we use the x and y results to produce the derivatives Ixx ,
Iyy , and Ixy . These derivatives are obtained by squaring and
multiplying the elements of the input derivative matrices Ix and
Iy. The Gaussian filtering process helps smooth and refine these
derivatives, which is useful for our image processing tasks such as
edge detection and feature extraction.

Here's the mathematical explanation of the process:

Given input derivative matrices Ix (x, y) and I(x,y)y of size width ×
height , the method calculates the product matrices Ixx (x, y) , Iyy (x,
y) , and Ixy (x, y) as follows:

Where kernel[i][j] represents the value of the Gaussian kernel at
position (i, j).

In these equations:

• (x, y) represent the spatial coordinates of the output matrices Ixx,
Iyy, and Ixy.
• i and j represent the spatial offsets within the Gaussian kernel.
• The sums are taken over all possible offsets i and j , effectively
spanning the entire image domain.
• The Gaussian kernel is applied to each pixel in the input matrices,

and the resulting weighted sums are accumulated to compute the
output matrices Ixx , Iyy, and Ixy.

The returned matrix (in this case, Ixy represents the result of
applying the Gaussian filter to the crossproduct derivative matrix.

To combine the Gaussian filtering process for both x and y
directions, as well as the cross-product operation, into a single
sigma notation equation, we can express the entire process as a
convolution operation using the 2D Gaussian kernel. Let's denote
the input matrix as i mage(x, y) and the Gaussian kernel as kernel(i,
j).

The combined process can be represented as follows:

Where:

• radius =

7

accumulated to compute the output matrices  Ixx ,
 Iyy, and  Ixy.

The returned matrix (in this case,  Ixy represents the
result of applying the Gaussian Þlter to the cross-
product derivative matrix.

To combine the Gaussian Þltering process for both x
and y directions, as well as the cross-product opera-
tion, into a single sigma notation equation, we can
express the entire process as a convolution operation
using the 2D Gaussian kernel. Let's denote the input
matrix as  image(x, y) and the Gaussian kernel as
 kernel(i, j).

The combined process can be represented as follows:

 

output(x, y) =
i=−radius

∑
radius

j=−radius

∑
radius

image(x + k, y + l) ⋅ kernel(k, l) ⋅ kernel(i, j)(
k=−radius

∑
radius

l=−radius

∑
radius)

2

Where:

•  radius = 2
size represents the radius of the Gaussian

kernel.
•  kernel(i, j) denotes the value of the Gaussian ker-

nel at position (i, j).
• The outer sums iterate over the pixel positions
 (x, y) in the output matrix.

• The inner sums represent the convolution opera-
tion for each pixel, where the input matrix  image is
convolved with the Gaussian kernel.

• Within the inner sums, the cross-product opera-
tion is performed by squaring the result of the con-
volution.

This single sigma notation equation encapsulates the
entire process of applying Gaussian Þltering and
computing the products of derivatives  Ixx ,  Iyy , and
 Ixy simultaneously for each pixel  (x, y) in the input
matrix.

Bringing It All Together

The goal is to modify the Hessian threshold, and the
Gaussian weights to converge on a set of identiÞed

features that converge on both the correct number of
features, as well as exhibiting high repeatability.

This recursive function updates the Hessian matrix,
applies feature detection, evaluates the detected fea-
tures, and adjusts parameters iteratively until conver-
gence. Let  F n represent the set of detected features
at iteration  n ,  Tn represent the Hessian threshold,
and  kernel (i, j)mod

n represent the modiÞed Gaussian
kernel weights at iteration  n . The iterative optimiza-
tion process can be described as follows:

 F =n Optimize(F , T , kernel (i, j))n−1
n−1 mod

n−1

Where  Optimize is a function that encompasses the
following steps:

Gaussian Filtering and Hessian Computation:

• Apply the Gaussian Þlter to the image gradients to
compute the modiÞed Hessian matrix elements
 H (x, y)mod using  kernel (i, j)mod

n−1 .
• This step can be represented as:

 

H (x, y)mod =
i=−radius

∑
radius

j=−radius

∑
radius

I (x + k, y + l) ⋅ kernel (k, l) ⋅ kernel (i, j)(
k=−radius

∑
radius

l=−radius

∑
radius

mod mod
n−1)

2

mod
n−1

Feature Detection and Evaluation:

• Detect features  F n using the modiÞed Hessian
threshold  Tn−1 and  H (x, y)mod .

• Evaluate the quality and repeatability of features
 F n based on predeÞned metrics.

Parameter Adjustment:

• Adjust the Hessian threshold  Tn and the Gaussian
kernel weights  kernel (i, j)mod

n based on the evalua-
tion results.

Convergence Check:

• Check for convergence based on predeÞned crite-
ria, such as changes in feature count, distribution,
or repeatability metrics.

 represents the radius of the Gaussian kernel.
• kernel(i, j) denotes the value of the Gaussian kernel at position
(i, j).
• The outer sums iterate over the pixel positions (x, y) in the output
matrix.
• The inner sums represent the convolution operation for each
pixel, where the input matrix image is convolved with the Gaussian
kernel.
• Within the inner sums, the cross-product operation is performed
by squaring the result of the convolution.

This single sigma notation equation encapsulates the entire
process of applying Gaussian filtering and computing the products
of derivatives Ixx , Iyy , and Ixy simultaneously for each pixel (x, y)
in the input matrix.

16. Bringing It All Together
The goal is to modify the Hessian threshold, and the Gaussian
weights to converge on a set of identified features that converge
on both the correct number of features, as well as exhibiting high
repeatability.

This recursive function updates the Hessian matrix, applies feature
detection, evaluates the detected features, and adjusts parameters
iteratively until convergence. Let Fn represent the set of detected
features at iteration n , Tn represent the Hessian threshold, and
kerneln

mod() represent the modified Gaussian kernel weights at
iteration n. The iterative optimization process can be described as
follows:

Where Optimize is a function that encompasses the following

6

 
kernel[y][x] =

e∑y =− radius ′
radius ∑x =− radius ′

radius −
2σ2

r +y′2 ′2

e−
2σ2

x +y2 2

In this equation:

•  kernel[y][x] represents the weight assigned to the
pixel at position  (x, y) within the Gaussian kernel.

•  σ denotes the standard deviation of the Gaussian
distribution.

•  radius = 2
size represents the radius of the kernel.

•  x and  y iterate over the spatial coordinates within
the kernel, ranging from  −radius to  radius.

• The numerator calculates the Gaussian weight for
the current pixel position  (x, y).

• The denominator represents the normalization
term, which is the sum of Gaussian weights over all
pixel positions within the kernel.

• The sum is computed over  y′ and, representing all
possible pixel positions within the kernel.

Application in X and Y

Next, we apply the Gaussian Þler to X and Y sepa-
rately.

Given an input matr ix  image(x, y) o f s ize
 width × height , and assuming a Gaussian kernel of
size  size × size with standard deviation  σ , the
method calculates the Þltered output matrix  
for each pixel as follows:

 

 output (x, y) =

 image (x + i, y + j) ⋅ kernel[i + radius][j + radius]
i=− radius

∑
radius

j=− radius

∑
radius

Where:

•  radius = 2
size represents the radius of the Gaussian

kernel.
•  kernel[i + radius][j + radius] denotes the value of

the Gaussian kernel at position  (i, j).
• The sums are taken over all possible offsets  i and  j ,

ranging from  −radius to  radius , effectively cover-
ing the entire kernel region around pixel  (x, y).

The Gaussian kernel weights are multiplied by the
corresponding pixel values within the kernel neigh-
borhood, and the resulting weighted sums are accu-
mulated to obtain the Þltered output for each pixel.

Crossproduct of X and Y

Next, we use the  xand  yresults to produce the deriva-
tives  Ixx ,  Iyy , and  Ixy . These derivatives are obtained
by squaring and multiplying the elements of the in-
put derivative matrices  Ix and  Iy . The Gaussian Þlter-
ing process helps to smooth and reÞne these deriva-
tives, which is useful in for our image processing
tasks such as edge detection and feature extraction.

Here's the mathematical explanation of the process:

Given input derivative matrices  I (x, y)x and  
of size  width × height , the method calculates the
product matrices  I (x, y)xx ,  I (x, y)yy , and  I (x, y)xy as
follows:

 
I (x, y) =xx (I (x +

i=−∞

∑
∞

j=−∞

∑
∞

x i, y + j)) ⋅2 kernel[i][j]

 
I (x, y) =yy (I (x +

i=−∞

∑
∞

j=−∞

∑
∞

y i, y + j)) ⋅2 kernel[i][j]

 
I (x, y) =xy I (x +

i=−∞

∑
∞

j=−∞

∑
∞

x i, y + j) ⋅ I (x +y i, y + j) ⋅ kernel[i][j]

Where  kernel[i][j] represents the value of the Gauss-
ian kernel at position  (i, j).

In these equations:

•  (x, y) represent the spatial coordinates of the out-
put matrices  Ixx,  Iyy, and  Ixy.

•  i and  j represent the spatial offsets within the
Gaussian kernel.

• The sums are taken over all possible offsets  i and  j ,
effectively spanning the entire image domain.

• The Gaussian kernel is applied to each pixel in the
input matrices, and the resulting weighted sums are

6

 
kernel[y][x] =

e∑y =− radius ′
radius ∑x =− radius ′

radius −
2σ2

r +y′2 ′2

e−
2σ2

x +y2 2

In this equation:

•  kernel[y][x] represents the weight assigned to the
pixel at position  (x, y) within the Gaussian kernel.

•  σ denotes the standard deviation of the Gaussian
distribution.

•  radius = 2
size represents the radius of the kernel.

•  x and  y iterate over the spatial coordinates within
the kernel, ranging from  −radius to  radius.

• The numerator calculates the Gaussian weight for
the current pixel position  (x, y).

• The denominator represents the normalization
term, which is the sum of Gaussian weights over all
pixel positions within the kernel.

• The sum is computed over  y′ and, representing all
possible pixel positions within the kernel.

Application in X and Y

Next, we apply the Gaussian Þler to X and Y sepa-
rately.

Given an input matr ix  image(x, y) o f s ize
 width × height , and assuming a Gaussian kernel of
size  size × size with standard deviation  σ , the
method calculates the Þltered output matrix  
for each pixel as follows:

 

 output (x, y) =

 image (x + i, y + j) ⋅ kernel[i + radius][j + radius]
i=− radius

∑
radius

j=− radius

∑
radius

Where:

•  radius = 2
size represents the radius of the Gaussian

kernel.
•  kernel[i + radius][j + radius] denotes the value of

the Gaussian kernel at position  (i, j).
• The sums are taken over all possible offsets  i and  j ,

ranging from  −radius to  radius , effectively cover-
ing the entire kernel region around pixel  (x, y).

The Gaussian kernel weights are multiplied by the
corresponding pixel values within the kernel neigh-
borhood, and the resulting weighted sums are accu-
mulated to obtain the Þltered output for each pixel.

Crossproduct of X and Y

Next, we use the  xand  yresults to produce the deriva-
tives  Ixx ,  Iyy , and  Ixy . These derivatives are obtained
by squaring and multiplying the elements of the in-
put derivative matrices  Ix and  Iy . The Gaussian Þlter-
ing process helps to smooth and reÞne these deriva-
tives, which is useful in for our image processing
tasks such as edge detection and feature extraction.

Here's the mathematical explanation of the process:

Given input derivative matrices  I (x, y)x and  
of size  width × height , the method calculates the
product matrices  I (x, y)xx ,  I (x, y)yy , and  I (x, y)xy as
follows:

 
I (x, y) =xx (I (x +

i=−∞

∑
∞

j=−∞

∑
∞

x i, y + j)) ⋅2 kernel[i][j]

 
I (x, y) =yy (I (x +

i=−∞

∑
∞

j=−∞

∑
∞

y i, y + j)) ⋅2 kernel[i][j]

 
I (x, y) =xy I (x +

i=−∞

∑
∞

j=−∞

∑
∞

x i, y + j) ⋅ I (x +y i, y + j) ⋅ kernel[i][j]

Where  kernel[i][j] represents the value of the Gauss-
ian kernel at position  (i, j).

In these equations:

•  (x, y) represent the spatial coordinates of the out-
put matrices  Ixx,  Iyy, and  Ixy.

•  i and  j represent the spatial offsets within the
Gaussian kernel.

• The sums are taken over all possible offsets  i and  j ,
effectively spanning the entire image domain.

• The Gaussian kernel is applied to each pixel in the
input matrices, and the resulting weighted sums are

7

accumulated to compute the output matrices  Ixx ,
 Iyy, and  Ixy.

The returned matrix (in this case,  Ixy represents the
result of applying the Gaussian Þlter to the cross-
product derivative matrix.

To combine the Gaussian Þltering process for both x
and y directions, as well as the cross-product opera-
tion, into a single sigma notation equation, we can
express the entire process as a convolution operation
using the 2D Gaussian kernel. Let's denote the input
matrix as  image(x, y) and the Gaussian kernel as
 kernel(i, j).

The combined process can be represented as follows:

 

output(x, y) =
i=−radius

∑
radius

j=−radius

∑
radius

image(x + k, y + l) ⋅ kernel(k, l) ⋅ kernel(i, j)(
k=−radius

∑
radius

l=−radius

∑
radius)

2

Where:

•  radius = 2
size represents the radius of the Gaussian

kernel.
•  kernel(i, j) denotes the value of the Gaussian ker-

nel at position (i, j).
• The outer sums iterate over the pixel positions
 (x, y) in the output matrix.

• The inner sums represent the convolution opera-
tion for each pixel, where the input matrix  image is
convolved with the Gaussian kernel.

• Within the inner sums, the cross-product opera-
tion is performed by squaring the result of the con-
volution.

This single sigma notation equation encapsulates the
entire process of applying Gaussian Þltering and
computing the products of derivatives  Ixx ,  Iyy , and
 Ixy simultaneously for each pixel  (x, y) in the input
matrix.

Bringing It All Together

The goal is to modify the Hessian threshold, and the
Gaussian weights to converge on a set of identiÞed

features that converge on both the correct number of
features, as well as exhibiting high repeatability.

This recursive function updates the Hessian matrix,
applies feature detection, evaluates the detected fea-
tures, and adjusts parameters iteratively until conver-
gence. Let  F n represent the set of detected features
at iteration  n ,  Tn represent the Hessian threshold,
and  kernel (i, j)mod

n represent the modiÞed Gaussian
kernel weights at iteration  n . The iterative optimiza-
tion process can be described as follows:

 F =n Optimize(F , T , kernel (i, j))n−1
n−1 mod

n−1

Where  Optimize is a function that encompasses the
following steps:

Gaussian Filtering and Hessian Computation:

• Apply the Gaussian Þlter to the image gradients to
compute the modiÞed Hessian matrix elements
 H (x, y)mod using  kernel (i, j)mod

n−1 .
• This step can be represented as:

 

H (x, y)mod =
i=−radius

∑
radius

j=−radius

∑
radius

I (x + k, y + l) ⋅ kernel (k, l) ⋅ kernel (i, j)(
k=−radius

∑
radius

l=−radius

∑
radius

mod mod
n−1)

2

mod
n−1

Feature Detection and Evaluation:

• Detect features  F n using the modiÞed Hessian
threshold  Tn−1 and  H (x, y)mod .

• Evaluate the quality and repeatability of features
 F n based on predeÞned metrics.

Parameter Adjustment:

• Adjust the Hessian threshold  Tn and the Gaussian
kernel weights  kernel (i, j)mod

n based on the evalua-
tion results.

Convergence Check:

• Check for convergence based on predeÞned crite-
ria, such as changes in feature count, distribution,
or repeatability metrics.

7

accumulated to compute the output matrices  Ixx ,
 Iyy, and  Ixy.

The returned matrix (in this case,  Ixy represents the
result of applying the Gaussian Þlter to the cross-
product derivative matrix.

To combine the Gaussian Þltering process for both x
and y directions, as well as the cross-product opera-
tion, into a single sigma notation equation, we can
express the entire process as a convolution operation
using the 2D Gaussian kernel. Let's denote the input
matrix as  image(x, y) and the Gaussian kernel as
 kernel(i, j).

The combined process can be represented as follows:

 

output(x, y) =
i=−radius

∑
radius

j=−radius

∑
radius

image(x + k, y + l) ⋅ kernel(k, l) ⋅ kernel(i, j)(
k=−radius

∑
radius

l=−radius

∑
radius)

2

Where:

•  radius = 2
size represents the radius of the Gaussian

kernel.
•  kernel(i, j) denotes the value of the Gaussian ker-

nel at position (i, j).
• The outer sums iterate over the pixel positions
 (x, y) in the output matrix.

• The inner sums represent the convolution opera-
tion for each pixel, where the input matrix  image is
convolved with the Gaussian kernel.

• Within the inner sums, the cross-product opera-
tion is performed by squaring the result of the con-
volution.

This single sigma notation equation encapsulates the
entire process of applying Gaussian Þltering and
computing the products of derivatives  Ixx ,  Iyy , and
 Ixy simultaneously for each pixel  (x, y) in the input
matrix.

Bringing It All Together

The goal is to modify the Hessian threshold, and the
Gaussian weights to converge on a set of identiÞed

features that converge on both the correct number of
features, as well as exhibiting high repeatability.

This recursive function updates the Hessian matrix,
applies feature detection, evaluates the detected fea-
tures, and adjusts parameters iteratively until conver-
gence. Let  F n represent the set of detected features
at iteration  n ,  Tn represent the Hessian threshold,
and  kernel (i, j)mod

n represent the modiÞed Gaussian
kernel weights at iteration  n . The iterative optimiza-
tion process can be described as follows:

 F =n Optimize(F , T , kernel (i, j))n−1
n−1 mod

n−1

Where  Optimize is a function that encompasses the
following steps:

Gaussian Filtering and Hessian Computation:

• Apply the Gaussian Þlter to the image gradients to
compute the modiÞed Hessian matrix elements
 H (x, y)mod using  kernel (i, j)mod

n−1 .
• This step can be represented as:

 

H (x, y)mod =
i=−radius

∑
radius

j=−radius

∑
radius

I (x + k, y + l) ⋅ kernel (k, l) ⋅ kernel (i, j)(
k=−radius

∑
radius

l=−radius

∑
radius

mod mod
n−1)

2

mod
n−1

Feature Detection and Evaluation:

• Detect features  F n using the modiÞed Hessian
threshold  Tn−1 and  H (x, y)mod .

• Evaluate the quality and repeatability of features
 F n based on predeÞned metrics.

Parameter Adjustment:

• Adjust the Hessian threshold  Tn and the Gaussian
kernel weights  kernel (i, j)mod

n based on the evalua-
tion results.

Convergence Check:

• Check for convergence based on predeÞned crite-
ria, such as changes in feature count, distribution,
or repeatability metrics.

J Math Techniques Comput Math, 2025 Volume 4 | Issue 1 | 6

steps:

16.1. Gaussian Filtering and Hessian Computation:
• Apply the Gaussian filter to the image gradients to compute
the modified Hessian matrix elements Hmod(x, y) using kernel

7

accumulated to compute the output matrices  Ixx ,
 Iyy, and  Ixy.

The returned matrix (in this case,  Ixy represents the
result of applying the Gaussian Þlter to the cross-
product derivative matrix.

To combine the Gaussian Þltering process for both x
and y directions, as well as the cross-product opera-
tion, into a single sigma notation equation, we can
express the entire process as a convolution operation
using the 2D Gaussian kernel. Let's denote the input
matrix as  image(x, y) and the Gaussian kernel as
 kernel(i, j).

The combined process can be represented as follows:

 

output(x, y) =
i=−radius

∑
radius

j=−radius

∑
radius

image(x + k, y + l) ⋅ kernel(k, l) ⋅ kernel(i, j)(
k=−radius

∑
radius

l=−radius

∑
radius)

2

Where:

•  radius = 2
size represents the radius of the Gaussian

kernel.
•  kernel(i, j) denotes the value of the Gaussian ker-

nel at position (i, j).
• The outer sums iterate over the pixel positions
 (x, y) in the output matrix.

• The inner sums represent the convolution opera-
tion for each pixel, where the input matrix  image is
convolved with the Gaussian kernel.

• Within the inner sums, the cross-product opera-
tion is performed by squaring the result of the con-
volution.

This single sigma notation equation encapsulates the
entire process of applying Gaussian Þltering and
computing the products of derivatives  Ixx ,  Iyy , and
 Ixy simultaneously for each pixel  (x, y) in the input
matrix.

Bringing It All Together

The goal is to modify the Hessian threshold, and the
Gaussian weights to converge on a set of identiÞed

features that converge on both the correct number of
features, as well as exhibiting high repeatability.

This recursive function updates the Hessian matrix,
applies feature detection, evaluates the detected fea-
tures, and adjusts parameters iteratively until conver-
gence. Let  F n represent the set of detected features
at iteration  n ,  Tn represent the Hessian threshold,
and  kernel (i, j)mod

n represent the modiÞed Gaussian
kernel weights at iteration  n . The iterative optimiza-
tion process can be described as follows:

 F =n Optimize(F , T , kernel (i, j))n−1
n−1 mod

n−1

Where  Optimize is a function that encompasses the
following steps:

Gaussian Filtering and Hessian Computation:

• Apply the Gaussian Þlter to the image gradients to
compute the modiÞed Hessian matrix elements
 H (x, y)mod using  kernel (i, j)mod

n−1 .
• This step can be represented as:

 

H (x, y)mod =
i=−radius

∑
radius

j=−radius

∑
radius

I (x + k, y + l) ⋅ kernel (k, l) ⋅ kernel (i, j)(
k=−radius

∑
radius

l=−radius

∑
radius

mod mod
n−1)

2

mod
n−1

Feature Detection and Evaluation:

• Detect features  F n using the modiÞed Hessian
threshold  Tn−1 and  H (x, y)mod .

• Evaluate the quality and repeatability of features
 F n based on predeÞned metrics.

Parameter Adjustment:

• Adjust the Hessian threshold  Tn and the Gaussian
kernel weights  kernel (i, j)mod

n based on the evalua-
tion results.

Convergence Check:

• Check for convergence based on predeÞned crite-
ria, such as changes in feature count, distribution,
or repeatability metrics.

.
• This step can be represented as:

16.2. Feature Detection and Evaluation:
• Detect features Fn using the modified Hessian threshold Tn−1 and
H mod(x, y).

16.3. Parameter Adjustment:
• Adjust the Hessian threshold Tn and the Gaussian kernel weights
kerneln

mod(i, j) based on the evaluation results.

16.4. Convergence Check:
• Check for convergence based on predefined criteria, such as
changes in feature count, distribution, or repeatability metrics.

16.5. Recursive Call:
• Recursively call the function with updated parameters until
convergence is achieved.

17. Further Investigation
The areas for further investigation are briefly discussed below.
In crack detection, it could improve discrimination between cracks
and noise, potentially leading to more accurate results. Similarly,
in image enhancement, there's potential for selectively ampli-
fying features while reducing artifacts, though effectiveness may

vary. Adaptive segmentation thresholds enabled by proximity
modulated thresholding may offer more precise object delineation,
contingent on image complexity. Furthermore, in image fusion,
dynamic parameter adjustment could lead to more informative
composite images, though actual improvements depend on image
compatibility and fusion algorithms.

18. Conclusion
The integration of proximity modulated thresholding within
Hessian matrix techniques exhibited fast and effective solutions
in our multispectral aerial imagery. The adaptive convergence
increased speed, and increased realiability by more closely
matching correlated feature points between images. While the
versatility of this approach extends to other Hessian matrix-based
techniques such as texture analysis and pattern recognition, the
extent of enhancement across different domains requires further
investigation and refinement [1-4].

References
1. Zhao, Y., Zhao, Q., He, Y., & Lu, G. (2016, January). A

crack extraction algorithm based on im-proved median filter
and Hessian matrix. In Seventh International Symposium on
Precision Me-chanical Measurements (Vol. 9903, pp. 775-
780). SPIE.

2. Chen, X., Wu, Y., Zhu, C., & Liu, H. (2022). Research on
Image Quality Enhancement Algorithm Using Hessian
Matrix. Journal of New Media, 4(3), 117.

3. Ge, S., Shi, Z., Peng, G., & Zhu, Z. (2019). Two-steps coronary
artery segmentation algorithm based on improved level set
model in combination with weighted shape-prior constraints.
Journal of medical systems, 43, 1-10.

4. Li, X., Wang, X., Cheng, X., Tan, H., & Li, X. (2022). Multi-
focus image fusion based on hessian matrix decomposition
and salient difference focus detection. Entropy, 24(11), 1527.

7

accumulated to compute the output matrices  Ixx ,
 Iyy, and  Ixy.

The returned matrix (in this case,  Ixy represents the
result of applying the Gaussian Þlter to the cross-
product derivative matrix.

To combine the Gaussian Þltering process for both x
and y directions, as well as the cross-product opera-
tion, into a single sigma notation equation, we can
express the entire process as a convolution operation
using the 2D Gaussian kernel. Let's denote the input
matrix as  image(x, y) and the Gaussian kernel as
 kernel(i, j).

The combined process can be represented as follows:

 

output(x, y) =
i=−radius

∑
radius

j=−radius

∑
radius

image(x + k, y + l) ⋅ kernel(k, l) ⋅ kernel(i, j)(
k=−radius

∑
radius

l=−radius

∑
radius)

2

Where:

•  radius = 2
size represents the radius of the Gaussian

kernel.
•  kernel(i, j) denotes the value of the Gaussian ker-

nel at position (i, j).
• The outer sums iterate over the pixel positions
 (x, y) in the output matrix.

• The inner sums represent the convolution opera-
tion for each pixel, where the input matrix  image is
convolved with the Gaussian kernel.

• Within the inner sums, the cross-product opera-
tion is performed by squaring the result of the con-
volution.

This single sigma notation equation encapsulates the
entire process of applying Gaussian Þltering and
computing the products of derivatives  Ixx ,  Iyy , and
 Ixy simultaneously for each pixel  (x, y) in the input
matrix.

Bringing It All Together

The goal is to modify the Hessian threshold, and the
Gaussian weights to converge on a set of identiÞed

features that converge on both the correct number of
features, as well as exhibiting high repeatability.

This recursive function updates the Hessian matrix,
applies feature detection, evaluates the detected fea-
tures, and adjusts parameters iteratively until conver-
gence. Let  F n represent the set of detected features
at iteration  n ,  Tn represent the Hessian threshold,
and  kernel (i, j)mod

n represent the modiÞed Gaussian
kernel weights at iteration  n . The iterative optimiza-
tion process can be described as follows:

 F =n Optimize(F , T , kernel (i, j))n−1
n−1 mod

n−1

Where  Optimize is a function that encompasses the
following steps:

Gaussian Filtering and Hessian Computation:

• Apply the Gaussian Þlter to the image gradients to
compute the modiÞed Hessian matrix elements
 H (x, y)mod using  kernel (i, j)mod

n−1 .
• This step can be represented as:

 

H (x, y)mod =
i=−radius

∑
radius

j=−radius

∑
radius

I (x + k, y + l) ⋅ kernel (k, l) ⋅ kernel (i, j)(
k=−radius

∑
radius

l=−radius

∑
radius

mod mod
n−1)

2

mod
n−1

Feature Detection and Evaluation:

• Detect features  F n using the modiÞed Hessian
threshold  Tn−1 and  H (x, y)mod .

• Evaluate the quality and repeatability of features
 F n based on predeÞned metrics.

Parameter Adjustment:

• Adjust the Hessian threshold  Tn and the Gaussian
kernel weights  kernel (i, j)mod

n based on the evalua-
tion results.

Convergence Check:

• Check for convergence based on predeÞned crite-
ria, such as changes in feature count, distribution,
or repeatability metrics.

Copyright: ©2025 Greg Passmore. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

https://opastpublishers.com/

https://doi.org/10.1117/12.2218111
https://doi.org/10.1117/12.2218111
https://doi.org/10.1117/12.2218111
https://doi.org/10.1117/12.2218111
https://doi.org/10.1117/12.2218111
http://dx.doi.org/10.32604/jnm.2022.027060
http://dx.doi.org/10.32604/jnm.2022.027060
http://dx.doi.org/10.32604/jnm.2022.027060
https://doi.org/10.1007/s10916-019-1329-y
https://doi.org/10.1007/s10916-019-1329-y
https://doi.org/10.1007/s10916-019-1329-y
https://doi.org/10.1007/s10916-019-1329-y
https://doi.org/10.3390/e24111527
https://doi.org/10.3390/e24111527
https://doi.org/10.3390/e24111527

