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Abstract
Our lab processes large volumes of multispectral drone data. We use feature identification for image alignment, object 
recognition, and scene reconstruction. Traditional methods using the Hessian matrix detect features like corners or 
blobs. This method is commonly used for color images, and the issues with changes in lighting and exposure are well 
known. However, for our multispectral data, it proved especially problematic. Fixed thresholds worsened these issues, 
causing inefficiencies and inaccuracies in feature matching and image alignment.

This paper presents a dynamic thresholding approach that adjusts the feature detection threshold based on the disparity 
between the current and pre-defined feature count. It starts with an initial detection phase using a standard threshold to 
establish a baseline. The threshold is then adjusted incrementally until the feature count converges towards the target. 
This iterative refinement improves responsiveness and efficiency by considering the proximity between the current and 
desired counts.

Experimental results demonstrate that adaptive thresholding reduces computational costs on the order of one magnitude 
and can increase the granularity in feature detection processes, making it useful for complex image processing tasks. 
This approach is particularly beneficial in environments with significant variability in multispectral environments, or 
where image quality and lighting conditions present challenges.
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1. Significance
Feature identification is important for tasks such as image 
alignment, object recognition, and scene reconstruction. One 
common approach to feature identification involves using the 
Hessian matrix to detect areas in an image that contain distinct 
features, such as corners or blobs. However, the effectiveness 
of feature detection can vary significantly based on image 
characteristics like expo-sure, lighting conditions, and spectral 
bands. This variation often results in different numbers of detected 
features across images, which complicates alignment and other 
comparative tasks.

2. Simple Hessian Matrix
Definitions
For an image,  I, the intensity at pixel is denoted by  I (x, y). The 
Hessian matrix  (x, y) at a pixel in terms of image intensity is 

defined as:

3. Second-Order Derivatives
The second-order derivatives required for the Hessian matrix are 
approximated using finite differ-ences:
Second Partial Derivative in 

1

Proximity Modulated 
Thresholding for Hessian 
Matrix Feature Detection


Greg Passmore 

Abstract


Our  lab  processes  large  volumes  of  multispectral 
drone data. We use feature identiÞcation for image 
alignment, object recognition, and scene reconstruc-
tion.  Traditional  methods using the Hessian matrix 
detect features like corners or blobs. This method is 
commonly used for color images, and the issues with 
changes  in  lighting  and  exposure  are  well  known. 
However, for our multispectral data, it proved espe-
cially problematic. Fixed thresholds worsened these 
issues, causing inefficiencies and inaccuracies in fea-
ture matching and image alignment.

This  paper  presents  a  dynamic  thresholding  ap-
proach that adjusts the feature detection threshold 
based on the disparity between the current and pre-
deÞned feature count. It starts with an initial detec-
tion phase using a standard threshold to establish a 
baseline. The threshold is then adjusted incremental-
ly until the feature count converges towards the tar-
get.  This  iterative  reÞnement  improves  responsive-
ness and efficiency by considering the proximity be-
tween the current and desired counts.

Experimental  results  demonstrate  that  adaptive 
thresholding reduces computational costs on the or-
der of one magnitude and can increase the granulari-
ty in feature detection processes, making it useful for 
complex  image  processing  tasks.  This  approach  is 
particularly  beneÞcial  in  environments  with signiÞ-
cant  variability  in  multispectral  environments,  or 
where image quality and lighting conditions present 
challenges.

SigniÞcance

Feature identiÞcation is important for tasks such as 
image  alignment,  object  recognition,  and  scene  re-
construction.  One  common  approach  to  feature 
identiÞcation  involves  using  the  Hessian  matrix  to 
detect  areas  in  an  image that  contain  distinct  fea-
tures, such as corners or blobs. However, the effec-
tiveness  of  feature  detection  can  vary  signiÞcantly 
based on image characteristics like exposure, lighting 
conditions, and spectral bands. This variation often 
results  in  different  numbers  of  detected  features 
across images, which complicates alignment and oth-
er comparative tasks.

Simple Hessian Matrix


DeÞnitions 

For an image,  I , the intensity at pixel is denoted by 
 I(x, y) . The Hessian matrix  (x, y)  at a pixel in terms 
of image intensity is deÞned as:

 
H(x, y) = [ ∂x2

∂ I2

∂y∂x
∂ I2

∂x∂y
∂ I2

∂y2
∂ I2 ]

Second-Order Derivatives 

The second-order derivatives required for the Hess-
ian matrix are approximated using Þnite differences:

Second Partial Derivative in  x( )∂x2
∂ I2 :

 
≈

∂x2

∂ I2
I(x + 1, y) − 2I(x, y) + I(x − 1, y)

Second Partial Derivative in  y( )∂y2
∂ I2 :

 
≈

∂y2

∂ I2
I(x, y + 1) − 2I(x, y) + I(x, y − 1)

Mixed Partial Derivative:

Second Partial Derivative in 
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Mixed Partial Derivative:

2

 ( )∂x∂y
∂ I2  and  ( )∂y∂x

∂ I2 , which are equal by Schwarz's theo-
rem by the symmetry of the second derivatives:

 
∂x∂y

∂ I2

≈ (I(x + 1, y + 1) − I(x − 1, y + 1)
4
1

− I(x + 1, y − 1) + I(x − 1, y − 1))

Hessian Matrix Determinant 

The determinant of the Hessian matrix  H  at pixel 
 (x, y) is given by:

 
det(H(x, y)) = −(

∂x2

∂ I2 ) (
∂y2

∂ I2 ) (
∂x∂y

∂ I2 )
2

Interest Point Detection 

Interest  points  are  then  detected  by  applying  a 
threshold  θ to det(H(x, y)):

 If det(H(x, y)) > θ,  then (x, y) is an interest point

This mathematical formulation helps in understand-
ing the underlying computations and can be directly 
translated into algorithms for  processing images  to 
detect features or interest points based on changes in 
local curvature represented by the Hessian matrix.

Scale Invariance

It is possible to extend the simple Hessian Matrix to 
become scale invariant. Let’s take a look at the ex-
tended version. 

The scale invariant Hessian Matrix, H can be written 
as: 

 
H =

∂x2
∂ D2

∂x∂y
∂ D2

∂x∂σ
∂ D2

∂x∂y
∂ D2

∂y2
∂ D2

∂y∂σ
∂ D2

∂x∂σ
∂ D2

∂y∂σ
∂ D2

∂σ2
∂ D2

To  eliminate  the  keypoints  at  the  edges,  the  ei-
genvalues  λ , λ , λ1 2 3  of H are computed. A point is 
discarded if: 

 min λ , λ , λ ×(∣ 1∣ ∣ 2∣ ∣ 3∣) r < max λ , λ , λ(∣ 1∣ ∣ 2∣ ∣ 3∣)

Where r is a constant, used to decide the ratio be-
tween the smallest and largest eigenvalues. 

Orientation Assignment 

An  orientation  is  assigned  to  each  keypoint  to 
achieve invariance to image rotation. The local image 
gradient  directions  are  sampled  around  each  key-
point, and a histogram is formed from the gradient 
orientations.

Given a keypoint located at (x,y) in image I, and we 
let L(x,y,𝝈𝝈) with an orientation of 𝜃𝜃(x,y) be the scale-
space representation (i.e., the image convolved with a 
Gaussian kernel of standard deviation 𝝈𝝈) of I. 

The gradient magnitude M(x,y)  and the orientation 
𝜃𝜃(x,y)  at  each  image  point  in  a  neighboring  region 
around the keypoint can be calculated as follows:

 

M(x, y) = +(
∂x

∂L)
2

(
∂y

∂L)
2

θ(x, y) = tan−1 (
∂x
∂L

∂y
∂L )

A histogram is then formed of the gradient orienta-
tions. Each sample in the neighborhood contributes 
to the histogram with a weight equal to its gradient 
magnitude. The histogram could be formed over 36 
bins covering the 360-degree range of  orientations. 
The highest peak in the histogram is detected, and 
any other local peak that is within 80% of the high-
est peak is also considered to specify an orientation. 
This leads to the assignment of one or more orienta-
tions  θkeypoint to each keypoint.

Keypoint Descriptor 

Finally, local image gradients are measured at the se-
lected  scale  in  the  region  around  each  keypoint. 

 and 
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The highest peak in the histogram is detected, and any other local
peak that is within 80% of the highest peak is also considered to 
specify an orientation. This leads to the assignment of one or more 
orientations θkeypoint to each keypoint.
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While the descriptor is mainly computed through algorithmic 
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gradients in a region around each keypoint. These gradients 
are then transformed into a more stable form that serves as the 
descriptor. Here is an outline of the mathematical foundations of 
this step:

As above, let L(x,y,𝜎) be the scale space representation of the 
image at the keypoint's scale, and consider a d × d region around 
the keypoint. Typically, d = 16. This region around a keypoint 
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determines the extent of the local neighborhood and is critical for 
capturing sufficient detail while also allowing for generalization. 
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Interest Point Detection 

Interest  points  are  then  detected  by  applying  a 
threshold  θ to det(H(x, y)):

 If det(H(x, y)) > θ,  then (x, y) is an interest point

This mathematical formulation helps in understand-
ing the underlying computations and can be directly 
translated into algorithms for  processing images  to 
detect features or interest points based on changes in 
local curvature represented by the Hessian matrix.

Scale Invariance

It is possible to extend the simple Hessian Matrix to 
become scale invariant. Let’s take a look at the ex-
tended version. 

The scale invariant Hessian Matrix, H can be written 
as: 
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To  eliminate  the  keypoints  at  the  edges,  the  ei-
genvalues  λ , λ , λ1 2 3  of H are computed. A point is 
discarded if: 

 min λ , λ , λ ×(∣ 1∣ ∣ 2∣ ∣ 3∣) r < max λ , λ , λ(∣ 1∣ ∣ 2∣ ∣ 3∣)

Where r is a constant, used to decide the ratio be-
tween the smallest and largest eigenvalues. 

Orientation Assignment 

An  orientation  is  assigned  to  each  keypoint  to 
achieve invariance to image rotation. The local image 
gradient  directions  are  sampled  around  each  key-
point, and a histogram is formed from the gradient 
orientations.

Given a keypoint located at (x,y) in image I, and we 
let L(x,y,𝝈𝝈) with an orientation of 𝜃𝜃(x,y) be the scale-
space representation (i.e., the image convolved with a 
Gaussian kernel of standard deviation 𝝈𝝈) of I. 

The gradient magnitude M(x,y)  and the orientation 
𝜃𝜃(x,y)  at  each  image  point  in  a  neighboring  region 
around the keypoint can be calculated as follows:
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A histogram is then formed of the gradient orienta-
tions. Each sample in the neighborhood contributes 
to the histogram with a weight equal to its gradient 
magnitude. The histogram could be formed over 36 
bins covering the 360-degree range of  orientations. 
The highest peak in the histogram is detected, and 
any other local peak that is within 80% of the high-
est peak is also considered to specify an orientation. 
This leads to the assignment of one or more orienta-
tions  θkeypoint to each keypoint.
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Finally, local image gradients are measured at the se-
lected  scale  in  the  region  around  each  keypoint. 
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• Let d represent the side length of the 16×16 square region.
• The 16×16 region can be represented as:

For the 4×4 sub-regions within the 16×16 region:

• Let d d represent the side length of the 4×4 square sub-regions.
• Each 4×4 sub-region can be represented as:

Combining these notations, we can represent the entire process as:

Where:

• L(x, y, σ) represents the scale space representation of the image 
at the keypoint's scale.
• (x, y) denote the keypoint coordinates.
• σ represents the scale.
• d is the side length of the 16×16 square region.
• dd is the side length of the 4×4 square sub-regions.
• PixelGradient(x + i, y + j) represents the gradient of the pixel
at coordinates (x + i, y + j).

9. Differences 
The difference between the two representations of the Hessian 
matrices lies primarily in their dimensions and the function 
variables they are derived from, and the proximity modulation 
works for either the simple or extended method. Let's discuss these 
differences and their implications:

9.1. Function Variables:
• The first Hessian matrix H(x, y) is derived from a function I 
that depends wholly on spatial variables x and x. This is typical 
for basic image processing tasks where the image intensity I is a 
function of spatial coordinates. This matrix is primarily used for 
tasks such as feature detection in images, where the interest is in 
spatial shifts.
• The second Hessian matrix uses a function D that depends 
on spatial variables x , y , and a scale variable σ. This type of 
formulation is often used in scale-invariant feature detection 
methods, where the goal is to identify features across different 
scales. The inclusion of σ allows D to represent a function like 
the scale space representation of an image, commonly used in 
algorithms like Scale-Invariant Feature Transforms.

9.2. Matrix Dimensions:
• The first matrix is a 2×2 matrix, which is suitable for two-

dimensional spatial analysis. This matrix evaluates the curvature 
of the function I concerning the spatial dimensions alone.
• The second matrix is a 3×3 matrix, reflecting the addition of the 
scale dimension σ . This larger matrix can evaluate changes not 
only across spatial dimensions, but also how these changes vary 
with scale. This is crucial for detecting features that are consistent 
across different sizes or zoom levels of images.

9.3. Applications:
• The 2×2 Hessian matrix H(x, y)  is adequate for image processing 
tasks that require edge detection, corner detection, or other feature 
detections where only spatial considerations are necessary.
• The 3×3 Hessian matrix is used in more complex scenarios 
where scale invariance is important, such as in the detection of 
features that need to be recognized at different scales, distances 
or differing optical settings. This is essential for computer vision 
applications involving multiscale analysis, like object recognition 
across different cameras or optics.

9.4. Interpretation and Complexity:
• The complexity in interpreting the 2×2 matrix is lower since it 
deals only with spatial derivatives, which are easier to compute 
and visualize.
• The 3×3 matrix introduces additional complexity due to the 
inclusion of derivatives regarding σ, indicating how the detected 
features change as the image is progressively blurred (a common 
method for simulating changes in scale).

The issue becomes determining if we need scale invariance. When 
the images I1, I2, I3... are intrinsically at the same scale (independent 
of resolution differences), we can skip this more involved process. 
However, even minor shifts in scale can frustrate the later process 
of determining associated points for image alignment.

10. Density of Features
When identifying associated features across different images, 
achieving a consistent number of features for comparison is very 
helpful. However, due to variations in density, exposure, lighting, 
or detail, different images often yield differing counts of features 
when processed with a uniform threshold. To address this, we 
can dynamically adjust the threshold as necessary. This is also 
helpful because using a static rate of adjustment can lead to slow 
convergence. To improve efficiency, the rate at which the threshold 
changes should be proportional to the discrepancy between the 
current number of detected features and the desired count. The 
dynamic adjustment accelerates convergence by adapting more 
aggressively when the difference is larger, and more slowly as it 
narrows.

11. Convergence Mechanism Using the Hessian Matrix
The convergence mechanism involves adaptively adjusting a 
threshold to achieve a desired number of detected interest points 
based on the Hessian determinant. The key to understanding the 
convergence mechanism lies in the iterative adjustment process:

Initial Conditions: Start with an initial threshold for the 
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These are then transformed into a descriptor that al-
lows  for  signiÞcant  levels  of  local  shape  distortion 
and change in illumination.

While the descriptor is mainly computed through al-
gorithmic steps, the underlying mathematics involves 
capturing  local  image  gradients  in  a  region around 
each keypoint. These gradients are then transformed 
into a more stable form that serves as the descriptor. 
Here is an outline of the mathematical foundations 
of this step:

As above, let L(x,y,𝜎𝜎) be the scale-space representa-
tion of the image at the keypoint's scale, and consid-
er a d × d region around the keypoint. Typically, d = 16. 
This region around a keypoint serves as the local area 
where gradient magnitudes and orientations are com-
puted for feature descriptor creation. The choice of d 
determines the extent of the local neighborhood and 
is critical for capturing sufficient detail while also al-
lowing  for  generalization.  In  standard  implementa-
tions of SIFT, d = 16, which means a 16 × 16 square re-
gion is examined around each keypoint. 

The d ×  d region is further divided into smaller re-
gions, often 4 × 4, and for each of these sub-regions, 
an orientation histogram is generated. The orienta-
tion histogram is typically constructed with 8 bins, 
capturing  the  frequency  of  occurrence  of  gradient 
orientations in the 4×4 sub-region. Each pixel's gradi-
ent within these sub-regions contributes to these his-
tograms.

Let's look at representing the 16×16 region and the 
smaller 4×4 regions:

For the 16×16 region:

• Let  d  represent the side length of the 16×16 square 
region.

• The 16×16 region can be represented as:

 i=1

∑
d

j=1

∑
d

For the 4×4 sub-regions within the 16×16 region:

• Let  dd  represent the side length of the 4×4 square 
sub-regions.

• Each 4×4 sub-region can be represented as:

 k=1

∑
dd

l=1

∑
dd

Combining these notations, we can represent the en-
tire process as:

 

L(x, y, σ) =

 PixelGradient (x + i, y + j)
i=1

∑
d

j=1

∑
d (

k=1

∑
dd

l=1

∑
dd )

Where:

•  L(x, y, σ)  represents the scale-space representation 
of the image at the keypoint's scale.

•  (x, y) denote the keypoint coordinates.
•  σ represents the scale.
•  d is the side length of the 16×16 square region.
•  dd is the side length of the 4×4 square sub-regions.
•  PixelGradient(x + i, y + j)  represents the gradient 

of the pixel at coordinates  (x + i, y + j).
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tasks where the image intensity  I  is a function of 
spatial  coordinates.  This  matrix  is  primarily  used 
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• The second Hessian matrix uses a function  D  that 
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 x  and  x . This is typical for basic image processing 
tasks where the image intensity  I  is a function of 
spatial  coordinates.  This  matrix  is  primarily  used 
for tasks such as feature detection in images, where 
the interest is in spatial shifts.

• The second Hessian matrix uses a function  D  that 
depends on spatial variables  x, y , and a scale vari-
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∑
d
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∑
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∑
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∑
dd )

Where:

•  L(x, y, σ)  represents the scale-space representation 
of the image at the keypoint's scale.
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of the pixel at coordinates  (x + i, y + j).
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determinant of the Hessian matrix.

Detection and Counting: For each pixel (x, y) in the image, 
compute the determinant of the Hessian matrix. Count the 
number of pixels for which det(H(x, y)) > θ exceeds the threshold, 
indicating potential interest points.

Adaptive Adjustment: Compare the current count of interest 
points to the desired count. Based on the difference, adjust the 
threshold:

• If the number of detected points is greater than N, increase the 
threshold to make it harder for points to qualify as interest points:

• If count is less than N , decrease the threshold to allow more 
points to qualify:

Here, Δθ represents a scaling factor for the threshold adjustment, 
which may be refined each iteration.

Convergence Criterion: The process is repeated until the number
of detected points is close to N, or the changes in θ become 
negligibly small, indicating convergence.

Abstraction: The iterative adjustment can be mathematically 
expressed as:

where ± depends on whether count is greater than or less than N.

This method, then, dynamically fine-tunes the sensitivity of 
interest point detection to achieve a target number of features, 
balancing between sensitivity and specificity based on the image 
content and the degree of feature detection needed. This approach 
is particularly useful in applications where consistent feature 
detection across varying image conditions is required.

12. Extending Convergence
The proximity modulated threshold holds potential across a wide 
array of applications, particularly in scenarios where the goal of 
an optimal fitness set or numeric convergence point is essential. 
One example application lies in artificial intelligence (AI), where 
the adjustment of hyperparameters, such as the learning rate or the 
activation function (e.g., sigmoid), plays a pivotal role in model 
optimization. 

For now, however, let’s consider a scenario involving the 
enhancement of the Hessian matrix through the application of 

Gaussian functions. The Gaussian function reduces noise. One 
way to determine its effectiveness is to measure repeatability of 
the final feature set after Hessian matrix calculation. The Hessian 
matrix characterizes the curvature of the image function's surface, 
and our proximity modulation controls the convergence behavior 
via iterative optimization. We can attack the noisy or erratic data 
which introduces instability in the Hessian matrix estimation with 
the Gaussian operator, minimizing suboptimal convergence or 
divergence.

By incorporating proximity modulated thresholding techniques 
inside the Gaussian function controlled by eventual feature 
repeatability derived by the Hessian matrix computation, it 
becomes possible to reduce the impact of image noise and increase 
final result reliability. Said another way, the proximity modulated 
threshold method can also dynamically adjust the Gaussian 
weights based on the observed repeatability leading towards a 
zero divergence from frame to frame. This adaptive thresholding 
mechanism, then, can effectively filter out noise to focus on more 
relevant image information, thereby improving the accuracy and 
reliability of the Hessian matrix calculation by way of improvement 
of the Gaussian function.

13. Gaussian Noise Easing
Here, we take a look at repeatedly factoring to converge on an 
ideal Gaussian process. 

The building of the kernel creation can be expressed as: 

In this equation:

• kernel[y][x] represents the weight assigned to the pixel at position 
(x, y) within the Gaussian kernel.
• σ denotes the standard deviation of the Gaussian distribution.
• radius = 
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In this equation:

•  kernel[y][x]  represents the weight assigned to the 
pixel at position  (x, y) within the Gaussian kernel.

•  σ  denotes the standard deviation of the Gaussian 
distribution.

•  radius = 2
size represents the radius of the kernel.

•  x  and  y  iterate over the spatial coordinates within 
the kernel, ranging from  −radius to  radius.

• The numerator calculates the Gaussian weight for 
the current pixel position  (x, y).

• The  denominator  represents  the  normalization 
term, which is the sum of Gaussian weights over all 
pixel positions within the kernel.

• The sum is computed over  y′  and, representing all 
possible pixel positions within the kernel.

Application in X and Y

Next, we apply the Gaussian Þler to X and Y sepa-
rately. 

Given  an  input  matr ix   image(x, y)  o f  s ize 
 width × height , and assuming a Gaussian kernel of 
size  size × size  with standard deviation  σ ,  the 
method  calculates  the  Þltered  output  matrix   
for each pixel as follows:

 

 output (x, y) =

 image (x + i, y + j) ⋅ kernel[i +  radius ][j +  radius ]
i=− radius 

∑
radius 

j=− radius 

∑
radius 

Where:

•  radius = 2
size  represents the radius of the Gaussian 

kernel.
•  kernel[i + radius][j + radius]  denotes the value of 

the Gaussian kernel at position  (i, j).
• The sums are taken over all possible offsets  i  and  j , 

ranging from  −radius  to  radius , effectively cover-
ing the entire kernel region around pixel  (x, y).

The Gaussian kernel  weights  are multiplied by the 
corresponding pixel values within the kernel neigh-
borhood, and the resulting weighted sums are accu-
mulated to obtain the Þltered output for each pixel.

Crossproduct of X and Y

Next, we use the  xand  yresults to produce the deriva-
tives  Ixx ,  Iyy , and  Ixy . These derivatives are obtained 
by squaring and multiplying the elements of the in-
put derivative matrices  Ix  and  Iy . The Gaussian Þlter-
ing process helps to smooth and reÞne these deriva-
tives,  which  is  useful  in  for  our  image  processing 
tasks such as edge detection and feature extraction.

Here's the mathematical explanation of the process:

Given  input  derivative  matrices   I (x, y)x  and   
of size  width × height ,  the method calculates the 
product matrices  I (x, y)xx ,  I (x, y)yy , and  I (x, y)xy  as 
follows:

 
I (x, y) =xx (I (x +

i=−∞

∑
∞

j=−∞

∑
∞

x i, y + j)) ⋅2 kernel[i][j]

 
I (x, y) =yy (I (x +

i=−∞

∑
∞

j=−∞

∑
∞

y i, y + j)) ⋅2 kernel[i][j]

 
I (x, y) =xy I (x +

i=−∞

∑
∞

j=−∞

∑
∞

x i, y + j) ⋅ I (x +y i, y + j) ⋅ kernel[i][j]

Where  kernel[i][j]  represents the value of the Gauss-
ian kernel at position  (i, j).

In these equations:

•  (x, y) represent the spatial coordinates of the out-
put matrices  Ixx,  Iyy, and  Ixy.

•  i  and  j  represent the spatial offsets within the 
Gaussian kernel.

• The sums are taken over all possible offsets  i  and  j , 
effectively spanning the entire image domain.

• The Gaussian kernel is applied to each pixel in the 
input matrices, and the resulting weighted sums are 

 represents the radius of the kernel.
• x and y iterate over the spatial coordinates within the kernel, 
ranging from −radius to radius.
• The numerator calculates the Gaussian weight for the current 
pixel position (x, y).
• The denominator represents the normalization term, which is the 
sum of Gaussian weights over all pixel positions within the kernel.
• The sum is computed over y ′ and, representing all possible pixel 
positions within the kernel.

14. Application in X and Y
Next, we apply the Gaussian filer to X and Y separately. 

Given an input matrix image(x, y) of size width × height , and 
assuming a Gaussian kernel of size size × size with standard 
deviation σ , the method calculates the filtered output matrix
(x,y) for each pixel as follows:
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• If the number of detected points  count  is greater 
than  N , increase the threshold to make it harder 
for points to qualify as interest points:

 
θ = θ + Δθ × (

N

count − N )

• If  count  is less than  N , decrease the threshold to 
allow more points to qualify:

 
θ = θ − Δθ × (

N

N − count)

Here,  Δθ represents a scaling factor for the threshold 
adjustment, which may be reÞned each iteration.

Convergence  Criterion:  The process  is  repeated 
until the number of detected points is close to  N , or 
the changes in  θ  become negligibly small, indicating 
convergence.

Abstraction: 

The iterative adjustment can be mathematically ex-
pressed as:

 
θ =new θ ±old Δθ ×

N

count − N

where  ±  depends on whether  count  is greater than 
or less than  N .

This method, then, dynamically Þne-tunes the sensi-
tivity of interest point detection to achieve a target 
number  of  features,  balancing  between  sensitivity 
and speciÞcity based on the image content and the 
degree of feature detection needed. This approach is 
particularly  useful  in  applications  where  consistent 
feature detection across varying image conditions is 
required.

Extending Convergence


The proximity modulated threshold holds potential 
across  a  wide  array  of  applications,  particularly  in 

scenarios where the goal of an optimal Þtness set or 
numeric convergence point is essential. One example 
application lies  in  artiÞcial  intelligence (AI),  where 
the  adjustment  of  hyperparameters,  such  as  the 
learning  rate  or  the  activation  function  (e.g.,  sig-
moid), plays a pivotal role in model optimization. 

For now, however, let’s consider a scenario involving 
the enhancement of the Hessian matrix through the 
application  of  Gaussian  functions.  The  Gaussian 
function reduces noise. One way to determine its ef-
fectiveness  is  to  measure  repeatability  of  the  Þnal 
feature set after Hessian matrix calculation. The Hes-
sian matrix characterizes the curvature of the image 
function's  surface,  and  our  proximity  modulation 
controls the convergence behavior via iterative opti-
mization.  We can  attack  the  noisy  or  erratic  data 
which introduces instability in the Hessian matrix es-
timation  with  the  Gaussian  operator,  minimizing 
suboptimal convergence or divergence.

By incorporating proximity modulated thresholding 
techniques  inside  the  Gaussian  function controlled 
by eventual feature repeatability derived by the Hess-
ian matrix computation,  it  becomes possible to re-
duce the impact of image noise and increase Þnal re-
sult reliability. Said another way, the proximity modu-
lated threshold method can also dynamically adjust 
the Gaussian weights based on the observed repeata-
bility leading towards a zero divergence from frame 
to  frame.  This  adaptive  thresholding  mechanism, 
then, can effectively Þlter out noise to focus on more 
relevant  image  information,  thereby  improving  the 
accuracy and reliability of the Hessian matrix calcula-
tion by way of improvement of the Gaussian func-
tion.

Gaussian Noise Easing


Here, we take a look at repeatedly factoring to con-
verge on an ideal Gaussian process. 

The building of the kernel creation can be expressed 
as: 
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kernel[y][x] =
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In this equation:

•  kernel[y][x]  represents the weight assigned to the 
pixel at position  (x, y) within the Gaussian kernel.

•  σ  denotes the standard deviation of the Gaussian 
distribution.

•  radius = 2
size represents the radius of the kernel.

•  x  and  y  iterate over the spatial coordinates within 
the kernel, ranging from  −radius to  radius.

• The numerator calculates the Gaussian weight for 
the current pixel position  (x, y).

• The  denominator  represents  the  normalization 
term, which is the sum of Gaussian weights over all 
pixel positions within the kernel.

• The sum is computed over  y′  and, representing all 
possible pixel positions within the kernel.

Application in X and Y

Next, we apply the Gaussian Þler to X and Y sepa-
rately. 

Given  an  input  matr ix   image(x, y)  o f  s ize 
 width × height , and assuming a Gaussian kernel of 
size  size × size  with standard deviation  σ ,  the 
method  calculates  the  Þltered  output  matrix   
for each pixel as follows:

 

 output (x, y) =

 image (x + i, y + j) ⋅ kernel[i +  radius ][j +  radius ]
i=− radius 

∑
radius 

j=− radius 

∑
radius 

Where:

•  radius = 2
size  represents the radius of the Gaussian 

kernel.
•  kernel[i + radius][j + radius]  denotes the value of 

the Gaussian kernel at position  (i, j).
• The sums are taken over all possible offsets  i  and  j , 

ranging from  −radius  to  radius , effectively cover-
ing the entire kernel region around pixel  (x, y).

The Gaussian kernel  weights  are multiplied by the 
corresponding pixel values within the kernel neigh-
borhood, and the resulting weighted sums are accu-
mulated to obtain the Þltered output for each pixel.

Crossproduct of X and Y

Next, we use the  xand  yresults to produce the deriva-
tives  Ixx ,  Iyy , and  Ixy . These derivatives are obtained 
by squaring and multiplying the elements of the in-
put derivative matrices  Ix  and  Iy . The Gaussian Þlter-
ing process helps to smooth and reÞne these deriva-
tives,  which  is  useful  in  for  our  image  processing 
tasks such as edge detection and feature extraction.

Here's the mathematical explanation of the process:

Given  input  derivative  matrices   I (x, y)x  and   
of size  width × height ,  the method calculates the 
product matrices  I (x, y)xx ,  I (x, y)yy , and  I (x, y)xy  as 
follows:

 
I (x, y) =xx (I (x +

i=−∞

∑
∞

j=−∞

∑
∞

x i, y + j)) ⋅2 kernel[i][j]

 
I (x, y) =yy (I (x +

i=−∞

∑
∞

j=−∞

∑
∞

y i, y + j)) ⋅2 kernel[i][j]

 
I (x, y) =xy I (x +

i=−∞

∑
∞

j=−∞

∑
∞

x i, y + j) ⋅ I (x +y i, y + j) ⋅ kernel[i][j]

Where  kernel[i][j]  represents the value of the Gauss-
ian kernel at position  (i, j).

In these equations:

•  (x, y) represent the spatial coordinates of the out-
put matrices  Ixx,  Iyy, and  Ixy.

•  i  and  j  represent the spatial offsets within the 
Gaussian kernel.

• The sums are taken over all possible offsets  i  and  j , 
effectively spanning the entire image domain.

• The Gaussian kernel is applied to each pixel in the 
input matrices, and the resulting weighted sums are 
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Where:
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Where  kernel[i][j]  represents the value of the Gauss-
ian kernel at position  (i, j).

In these equations:

•  (x, y) represent the spatial coordinates of the out-
put matrices  Ixx,  Iyy, and  Ixy.

•  i  and  j  represent the spatial offsets within the 
Gaussian kernel.

• The sums are taken over all possible offsets  i  and  j , 
effectively spanning the entire image domain.

• The Gaussian kernel is applied to each pixel in the 
input matrices, and the resulting weighted sums are 

 represents the radius of the Gaussian kernel.
• kernel[i + radius][j + radius] denotes the value of the Gaussian 
kernel at position (i, j).
• The sums are taken over all possible offsets i and j , ranging from 
− radius to r adius , effectively covering the entire kernel region 
around pixel (x, y).

The Gaussian kernel weights are multiplied by the corresponding 
pixel values within the kernel neighborhood, and the resulting 
weighted sums are accumulated to obtain the filtered output for 
each pixel.

15. Crossproduct of X and Y
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derivatives, which is useful for our image processing tasks such as 
edge detection and feature extraction.
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To combine the Gaussian filtering process for both x and y 
directions, as well as the cross-product operation, into a single 
sigma notation equation, we can express the entire process as a 
convolution operation using the 2D Gaussian kernel. Let's denote 
the input matrix as i mage(x, y) and the Gaussian kernel as kernel(i, 
j).

The combined process can be represented as follows:

Where:

• radius = 
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Where:

•  radius = 2
size  represents the radius of the Gaussian 

kernel.
•  kernel(i, j)  denotes the value of the Gaussian ker-

nel at position (i, j).
• The  outer  sums  iterate  over  the  pixel  positions 
 (x, y) in the output matrix.

• The inner sums represent the convolution opera-
tion for each pixel, where the input matrix  image is 
convolved with the Gaussian kernel.

• Within  the  inner  sums,  the  cross-product  opera-
tion is performed by squaring the result of the con-
volution.

This single sigma notation equation encapsulates the 
entire  process  of  applying  Gaussian  Þltering  and 
computing the products of derivatives  Ixx ,  Iyy , and 
 Ixy  simultaneously for each pixel  (x, y)  in the input 
matrix.

Bringing It All Together


The goal is to modify the Hessian threshold, and the 
Gaussian weights to converge on a set of identiÞed 

features that converge on both the correct number of 
features, as well as exhibiting high repeatability.

This recursive function updates the Hessian matrix, 
applies feature detection, evaluates the detected fea-
tures, and adjusts parameters iteratively until conver-
gence. Let  F n  represent the set of detected features 
at iteration  n ,  Tn  represent the Hessian threshold, 
and  kernel (i, j)mod

n  represent the modiÞed Gaussian 
kernel weights at iteration  n . The iterative optimiza-
tion process can be described as follows:

 F =n Optimize(F , T , kernel (i, j))n−1
n−1 mod

n−1

Where  Optimize  is a function that encompasses the 
following steps:

Gaussian Filtering and Hessian Computation:

• Apply the Gaussian Þlter to the image gradients to 
compute  the  modiÞed  Hessian  matrix  elements 
 H (x, y)mod  using  kernel (i, j)mod

n−1 .
• This step can be represented as:

 

H (x, y)mod =
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Feature Detection and Evaluation:

• Detect features  F n  using the modiÞed Hessian 
threshold  Tn−1 and  H (x, y)mod .

• Evaluate  the  quality  and  repeatability  of  features 
 F n based on predeÞned metrics.

Parameter Adjustment:

• Adjust the Hessian threshold  Tn  and the Gaussian 
kernel weights  kernel (i, j)mod

n  based on the evalua-
tion results.

Convergence Check:

• Check for convergence based on predeÞned crite-
ria, such as changes in feature count, distribution, 
or repeatability metrics.

 represents the radius of the Gaussian kernel.
• kernel(i, j) denotes the value of the Gaussian kernel at position 
(i, j).
• The outer sums iterate over the pixel positions (x, y) in the output 
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follows:

Where Optimize is a function that encompasses the following 
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•  kernel[y][x]  represents the weight assigned to the 
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•  σ  denotes the standard deviation of the Gaussian 
distribution.

•  radius = 2
size represents the radius of the kernel.

•  x  and  y  iterate over the spatial coordinates within 
the kernel, ranging from  −radius to  radius.

• The numerator calculates the Gaussian weight for 
the current pixel position  (x, y).

• The  denominator  represents  the  normalization 
term, which is the sum of Gaussian weights over all 
pixel positions within the kernel.

• The sum is computed over  y′  and, representing all 
possible pixel positions within the kernel.

Application in X and Y

Next, we apply the Gaussian Þler to X and Y sepa-
rately. 

Given  an  input  matr ix   image(x, y)  o f  s ize 
 width × height , and assuming a Gaussian kernel of 
size  size × size  with standard deviation  σ ,  the 
method  calculates  the  Þltered  output  matrix   
for each pixel as follows:
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kernel.
•  kernel[i + radius][j + radius]  denotes the value of 

the Gaussian kernel at position  (i, j).
• The sums are taken over all possible offsets  i  and  j , 

ranging from  −radius  to  radius , effectively cover-
ing the entire kernel region around pixel  (x, y).

The Gaussian kernel  weights  are multiplied by the 
corresponding pixel values within the kernel neigh-
borhood, and the resulting weighted sums are accu-
mulated to obtain the Þltered output for each pixel.
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Next, we use the  xand  yresults to produce the deriva-
tives  Ixx ,  Iyy , and  Ixy . These derivatives are obtained 
by squaring and multiplying the elements of the in-
put derivative matrices  Ix  and  Iy . The Gaussian Þlter-
ing process helps to smooth and reÞne these deriva-
tives,  which  is  useful  in  for  our  image  processing 
tasks such as edge detection and feature extraction.

Here's the mathematical explanation of the process:
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of size  width × height ,  the method calculates the 
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follows:
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Where  kernel[i][j]  represents the value of the Gauss-
ian kernel at position  (i, j).

In these equations:

•  (x, y) represent the spatial coordinates of the out-
put matrices  Ixx,  Iyy, and  Ixy.

•  i  and  j  represent the spatial offsets within the 
Gaussian kernel.

• The sums are taken over all possible offsets  i  and  j , 
effectively spanning the entire image domain.

• The Gaussian kernel is applied to each pixel in the 
input matrices, and the resulting weighted sums are 
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accumulated to compute the output matrices  Ixx , 
 Iyy, and  Ixy.

The returned matrix (in this case,  Ixy  represents the 
result  of  applying  the  Gaussian  Þlter  to  the  cross-
product derivative matrix.

To combine the Gaussian Þltering process for both x 
and y directions, as well as the cross-product opera-
tion, into a single sigma notation equation, we can 
express the entire process as a convolution operation 
using the 2D Gaussian kernel. Let's denote the input 
matrix as  image(x, y)  and the Gaussian kernel as 
 kernel(i, j).

The combined process can be represented as follows:

 

output(x, y) =
i=−radius

∑
radius

j=−radius

∑
radius

image(x + k, y + l) ⋅ kernel(k, l) ⋅ kernel(i, j)(
k=−radius

∑
radius

l=−radius

∑
radius )

2

Where:

•  radius = 2
size  represents the radius of the Gaussian 

kernel.
•  kernel(i, j)  denotes the value of the Gaussian ker-

nel at position (i, j).
• The  outer  sums  iterate  over  the  pixel  positions 
 (x, y) in the output matrix.

• The inner sums represent the convolution opera-
tion for each pixel, where the input matrix  image is 
convolved with the Gaussian kernel.

• Within  the  inner  sums,  the  cross-product  opera-
tion is performed by squaring the result of the con-
volution.

This single sigma notation equation encapsulates the 
entire  process  of  applying  Gaussian  Þltering  and 
computing the products of derivatives  Ixx ,  Iyy , and 
 Ixy  simultaneously for each pixel  (x, y)  in the input 
matrix.

Bringing It All Together


The goal is to modify the Hessian threshold, and the 
Gaussian weights to converge on a set of identiÞed 

features that converge on both the correct number of 
features, as well as exhibiting high repeatability.

This recursive function updates the Hessian matrix, 
applies feature detection, evaluates the detected fea-
tures, and adjusts parameters iteratively until conver-
gence. Let  F n  represent the set of detected features 
at iteration  n ,  Tn  represent the Hessian threshold, 
and  kernel (i, j)mod

n  represent the modiÞed Gaussian 
kernel weights at iteration  n . The iterative optimiza-
tion process can be described as follows:

 F =n Optimize(F , T , kernel (i, j))n−1
n−1 mod

n−1

Where  Optimize  is a function that encompasses the 
following steps:

Gaussian Filtering and Hessian Computation:

• Apply the Gaussian Þlter to the image gradients to 
compute  the  modiÞed  Hessian  matrix  elements 
 H (x, y)mod  using  kernel (i, j)mod

n−1 .
• This step can be represented as:

 

H (x, y)mod =
i=−radius

∑
radius

j=−radius

∑
radius

I (x + k, y + l) ⋅ kernel (k, l) ⋅ kernel (i, j)(
k=−radius

∑
radius

l=−radius

∑
radius

mod mod
n−1 )

2

mod
n−1

Feature Detection and Evaluation:

• Detect features  F n  using the modiÞed Hessian 
threshold  Tn−1 and  H (x, y)mod .

• Evaluate  the  quality  and  repeatability  of  features 
 F n based on predeÞned metrics.

Parameter Adjustment:

• Adjust the Hessian threshold  Tn  and the Gaussian 
kernel weights  kernel (i, j)mod

n  based on the evalua-
tion results.

Convergence Check:

• Check for convergence based on predeÞned crite-
ria, such as changes in feature count, distribution, 
or repeatability metrics.
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Where  Optimize  is a function that encompasses the 
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Gaussian Filtering and Hessian Computation:

• Apply the Gaussian Þlter to the image gradients to 
compute  the  modiÞed  Hessian  matrix  elements 
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Feature Detection and Evaluation:

• Detect features  F n  using the modiÞed Hessian 
threshold  Tn−1 and  H (x, y)mod .

• Evaluate  the  quality  and  repeatability  of  features 
 F n based on predeÞned metrics.

Parameter Adjustment:

• Adjust the Hessian threshold  Tn  and the Gaussian 
kernel weights  kernel (i, j)mod

n  based on the evalua-
tion results.

Convergence Check:

• Check for convergence based on predeÞned crite-
ria, such as changes in feature count, distribution, 
or repeatability metrics.
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steps:

16.1. Gaussian Filtering and Hessian Computation:
• Apply the Gaussian filter to the image gradients to compute 
the modified Hessian matrix elements Hmod(x, y)  using  kernel 
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I (x + k, y + l) ⋅ kernel (k, l) ⋅ kernel (i, j)(
k=−radius

∑
radius

l=−radius

∑
radius

mod mod
n−1 )

2

mod
n−1

Feature Detection and Evaluation:

• Detect features  F n  using the modiÞed Hessian 
threshold  Tn−1 and  H (x, y)mod .

• Evaluate  the  quality  and  repeatability  of  features 
 F n based on predeÞned metrics.

Parameter Adjustment:

• Adjust the Hessian threshold  Tn  and the Gaussian 
kernel weights  kernel (i, j)mod

n  based on the evalua-
tion results.

Convergence Check:

• Check for convergence based on predeÞned crite-
ria, such as changes in feature count, distribution, 
or repeatability metrics.

.
• This step can be represented as:

16.2. Feature Detection and Evaluation:
• Detect features Fn using the modified Hessian threshold Tn−1 and 
H mod(x, y).

16.3. Parameter Adjustment:
• Adjust the Hessian threshold Tn and the Gaussian kernel weights 
kerneln

mod(i, j) based on the evaluation results.

16.4. Convergence Check:
• Check for convergence based on predefined criteria, such as 
changes in feature count, distribution, or repeatability metrics.

16.5. Recursive Call:
• Recursively call the   function with updated parameters until 
convergence is achieved.

17. Further Investigation
The areas for further investigation are briefly discussed below. 
In crack detection, it could improve discrimination between cracks 
and noise,  potentially leading to more accurate results. Similarly, 
in image enhancement,  there's potential for selectively ampli-
fying features while reducing artifacts, though effectiveness may 

vary. Adaptive segmentation thresholds  enabled by proximity 
modulated thresholding may offer more precise object delineation, 
contingent on image complexity. Furthermore, in image fusion,  
dynamic parameter adjustment could lead to more informative 
composite images, though actual improvements depend on image 
compatibility and fusion algorithms. 

18. Conclusion
The integration of proximity modulated thresholding within 
Hessian matrix techniques exhibited fast and effective solutions 
in our multispectral aerial imagery. The adaptive convergence 
increased speed, and increased realiability by more closely 
matching correlated feature points between images. While the 
versatility of this approach extends to other Hessian matrix-based 
techniques such as texture analysis and pattern recognition, the 
extent of enhancement across different domains requires further 
investigation and refinement [1-4]. 
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accumulated to compute the output matrices  Ixx , 
 Iyy, and  Ixy.

The returned matrix (in this case,  Ixy  represents the 
result  of  applying  the  Gaussian  Þlter  to  the  cross-
product derivative matrix.

To combine the Gaussian Þltering process for both x 
and y directions, as well as the cross-product opera-
tion, into a single sigma notation equation, we can 
express the entire process as a convolution operation 
using the 2D Gaussian kernel. Let's denote the input 
matrix as  image(x, y)  and the Gaussian kernel as 
 kernel(i, j).

The combined process can be represented as follows:

 

output(x, y) =
i=−radius

∑
radius

j=−radius

∑
radius

image(x + k, y + l) ⋅ kernel(k, l) ⋅ kernel(i, j)(
k=−radius

∑
radius

l=−radius

∑
radius )

2

Where:

•  radius = 2
size  represents the radius of the Gaussian 

kernel.
•  kernel(i, j)  denotes the value of the Gaussian ker-

nel at position (i, j).
• The  outer  sums  iterate  over  the  pixel  positions 
 (x, y) in the output matrix.

• The inner sums represent the convolution opera-
tion for each pixel, where the input matrix  image is 
convolved with the Gaussian kernel.

• Within  the  inner  sums,  the  cross-product  opera-
tion is performed by squaring the result of the con-
volution.

This single sigma notation equation encapsulates the 
entire  process  of  applying  Gaussian  Þltering  and 
computing the products of derivatives  Ixx ,  Iyy , and 
 Ixy  simultaneously for each pixel  (x, y)  in the input 
matrix.

Bringing It All Together


The goal is to modify the Hessian threshold, and the 
Gaussian weights to converge on a set of identiÞed 

features that converge on both the correct number of 
features, as well as exhibiting high repeatability.

This recursive function updates the Hessian matrix, 
applies feature detection, evaluates the detected fea-
tures, and adjusts parameters iteratively until conver-
gence. Let  F n  represent the set of detected features 
at iteration  n ,  Tn  represent the Hessian threshold, 
and  kernel (i, j)mod

n  represent the modiÞed Gaussian 
kernel weights at iteration  n . The iterative optimiza-
tion process can be described as follows:

 F =n Optimize(F , T , kernel (i, j))n−1
n−1 mod

n−1

Where  Optimize  is a function that encompasses the 
following steps:

Gaussian Filtering and Hessian Computation:

• Apply the Gaussian Þlter to the image gradients to 
compute  the  modiÞed  Hessian  matrix  elements 
 H (x, y)mod  using  kernel (i, j)mod

n−1 .
• This step can be represented as:

 

H (x, y)mod =
i=−radius

∑
radius

j=−radius

∑
radius

I (x + k, y + l) ⋅ kernel (k, l) ⋅ kernel (i, j)(
k=−radius

∑
radius

l=−radius

∑
radius

mod mod
n−1 )

2

mod
n−1

Feature Detection and Evaluation:

• Detect features  F n  using the modiÞed Hessian 
threshold  Tn−1 and  H (x, y)mod .

• Evaluate  the  quality  and  repeatability  of  features 
 F n based on predeÞned metrics.

Parameter Adjustment:

• Adjust the Hessian threshold  Tn  and the Gaussian 
kernel weights  kernel (i, j)mod

n  based on the evalua-
tion results.

Convergence Check:

• Check for convergence based on predeÞned crite-
ria, such as changes in feature count, distribution, 
or repeatability metrics.
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