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Abstract
Objective: To determine the-role of CAT -21-A/T (rs7943316) and -262 C/T (rs1001179) genetic/variants/in the susceptibility 
of type 2 diabetes mellitus (T2DM). The study also explored the likelihood of clinical and anthropometric-associated 
variations in T2DM.

Methods: This case-control study comprised of total n=400 subjects categorized into two/groups: T2DM (n=200) and 
controls (n=200). Genotyping of variants/was-carried-out-by allele-specific (AS) and RFLP-PCR/based/strategies. 

Results: Distribution of genotypes revealed significant differences in both variants of CAT gene promotor. In CAT -21 A/T 
variant, the frequency of the mutant T/T genotype was higher in the T2DM group (56.0%) as controls (48.5%). While, in 
CAT -262 C/T variant, the frequency of heterozygous genotype C/T was significantly higher in diseased patients (64%)/
compared/to/controls (33%). Statistical association analysis demonstrated the significant implication of both CAT variants 
in the pathogenicity of T2DM (p<0.001). A significantly higher trend of systolic blood pressure, glucose, triglycerides, and 
LDL cholesterol levels was observed in T2DM patients (p<0.01). Whereas, plasma levels of HDL cholesterol were found 
to be within range in controls (p<0.001).

Conclusions: CAT variants may be regarded as potential biomarkers for the prognosis of T2DM. CAT (rs7943316) 
variant was involved in the modulation of risk associated with T2DM. While CAT (rs1001179) variant was involved in the 
development of resistance against the predisposition of T2DM. 
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1. Introduction
The prevalence of T2DM has frequently been increasing all around 
the world. The global prevalence estimated by the international 
diabetes federation (IDF) Atlas, 2019 reported a 9.3% rate for 
type 2 diabetes affecting around 463 million subjects that might 
be enhanced up to 10.2% by 2030 and expected to be 10.9% by 
2045 [1]. In Pakistan, the prevalence of T2DM is 17.1% projected 
by 9th edition of IDF [2]. T2DM is one of the common diseases 
in the world and its complications have become a major cause of 
death and disabilities [3,4]. Genetic predisposition, high caloric 

diets, and sedentary lifestyle are the foremost causes for the onset 
of disease condition [5]. 

In addition, oxidative stress has also been considered as a major 
pathogenic factor for the development of the complications 
[6,7]. Oxidative stress is produced due to increased generation 
of reactive oxygen species  (ROS).  These free radicals are 
synthesized in the body during normal metabolism. However,  the 
diseased condition is often associated with over production of 
ROS.  The antioxidant enzyme system is available in the body that 
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protects against the damaging effect of ROS. Oxidative stress is 
initiated when the level of ROS becomes amplified which in turn 
diminishes the antioxidant defense mechanism [8]. It is reported 
that genes associated with antioxidant enzymes are susceptible to 
developing genetic variations hence impeding the enzyme activity 
and alter its expression [9,10]. Catalase is considered as one of the 
powerful antioxidant intracellular enzymes. It mainly takes part in 
the decomposition of hydrogen peroxides (H2O2) into the simplest 
molecular forms of water and oxygen molecules [11]. CAT gene 
is located at chromosome 11 p13. There are many genetic variants 
that have been frequently reported in the human CAT gene [9].

CAT -21A/T (rs7943316) and 262C/T (rs1001179) are the 
polymorphisms which are located in the promotor region. CAT -21 
A/T and CAT-262 C/T are the genetic variations which could exert 
detrimental effects on its catalytic activity due to inappropriate 
binding of-transcription-factors which leads to alter gene 
expression [12]. Eventually, it results in a high concentration of 
H2O2 that promotes oxidative stress and hence oxidative damage 
[13]. Since oxidative stress not only increases the developing risk 
of diabetes but also plays a crucial role in the onset of late diabetic 
complications [6]. Several studies have reported that the intensity 
of oxidative damage is caused due to deficiency of antioxidant 
enzymes such as SOD, CAT, and GPX1. An enzyme of CAT can 
efficiently decay 2–20 million H2O2 molecules in a second [12,13]. 
The genetic variations in its gene may compromise the pronounced 
role and efficacy of the CAT enzyme which led to enhanced 
susceptibility to oxidative stress-induced diseases such as T2DM. 
Thus, the role of-CAT genetic variations of -21 A/T (rs7943316) 
and-262 C/T (rs1001179) in promotor region was investigated in 
association with the risk of developing the susceptibility of T2DM.

2. Materials and Methods
This case control study comprised of total n=400 subjects 
categorized into two groups: T2DM (n=200) and controls  (n=200). 
Samples were collected from the outpatient department-(OPD) of 
Baqai Institute of Diabetology and Endocrinology (BIDE). Prior 
approvals from the respective ethical review board and committees 
of the University of Karachi and BIDE were obtained before the 
commencement of the research project. The informed consent was 
taken from all participants. The demographic data was confidentially 
recorded using a purposely designed questionnaire after pilot 
testing. Blood samples were drawn from cephalic vein in Ethylene 
Diamine Tetra Acetic-(EDTA) vacutainers for DNA extraction and 
HbA1c testing, in fluoride-vacutainers for estimations of glucose 
level and in gel vacutainers for the biochemical-testing. After 
collection, gel vacutainers were centrifuged at 3500 rpm for 20 
minutes, serum samples were aliquoted and stored at-20 °C for 
further analysis. 

2.1. DNA Extraction
Extraction of DNA was performed by following the standard-
lab protocol of salting-out [14]. The quantity of he DNA for 
total n=400 samples were estimated by measuring 260 280 ratio 
and optical density (OD) of 1.7 to 1.8 using Nanodrop Analyzer 

(IMPLEN Nano Photometer® P-Class,  Germany). Though, the 
quality of DNA was analyzed by gel electrophoresis. 

2.2. Genotyping
Extracted DNA samples were used for the genotyping of CAT 
-21 A/T (rs7943316) genetic-variant-by PCR-RFLP-based meth-
od. Total 50 µl of total reaction mixture of PCR was prepared 
which-consist of 150 ng of genomic DNA, 0.5 µM of forward 
5′AATCAGAAGGCAGTCCTCCC-3′ and  reverse -primers 5′ 
TCGGGGAGCACAGAGTGTAC 3′, 0.2 mM of dNTPs, 1.5 mM-
of MgCl2 and 5 units of Taq DNA polymerase-added in 1X-PCR 
buffer (Thermo Fisher Scientific). The program used for the ampli-
fication of-targeted region consists of-initiation at-95°C for 5 min-
utes, -35 cycles of denaturation at 95°C for 35 seconds,  annealing 
at 62° C for 40 seconds and extension at 72°C for 30 seconds. Then 
final elongation was performed at 72°C extension for 7 minutes. 
The detection of CAT-21 A/T (rs7943316) variant was undertak-
en using10 U of Hinf1 restriction endonuclease enzyme selected 
by NEB cutter. It was used for the digestion of the PCR product, 
which was assayed on 1.5% agarose gel to observe the banding 
patterns of its genotypes.

CAT -262C/T (rs1001179) polymorphism was genotyped by using 
allele-specific PCR based method. For a single reaction, a total of 
25 µl of total reaction mixture of PCR was prepared which consist 
of 150 ng of genomic DNA, total reaction mixture of PCR 0.5 µM 
of forward-1 (F1) primer 5’-GCCCTGGGTTCGGCTATC-3’ for C 
allele or Forward-2 (F2) primer 5’-GCCCTGGGTTCGGCTATT-
-3’for T allele and reverse primers5’-GTTTGCTGTGCAGAA-
CACT-3’,0.4 mM of dNTPs, 2.0 mM of MgCl2 and 2.5 units of 
Taq DNA polymerase (Thermo Fisher Scientific). was added in 
1X-PCR buffer. The program used for the targeted CAT -262C 
T (rs1001179) polymorphism consists of-initiation at 95°C for 
5 minutes, 30 cycles of denaturation at 94°C for 45 seconds, 
annealing at-61°C for 40 seconds, and extension at 72°C for 45 
seconds. Final elongation was performed at 72°C for an extension 
of 5 minutes followed by product analysis of 340 bp for C or T 
allele on 2% (W/V) agarose gel.

2.3. Statistical and Bioinformatic Analysis
Interpretation of biochemical parameters and genotypic data 
was performed -using a software statistical package for the 
social sciences (SPSS) version 16.0. The average was compared 
to demonstrate the difference between the groups of cases and 
control using an independent sample t-test. The Chi-square and 
odds ratio statistics were interpreted to investigate the association 
of genotypic distribution for the two variants with the disease. 
Dominant and recessive models-for CAT genetic variations were 
also calculated to infer their overall risk from the combined impact 
of -21 A/T and -262 C/T genotypes respectively in diverse states. 

3. Results
A total of n=400 subjects were participated in this study. The 
comparison of clinical characteristics between T2DM and control 
groups is shown in Table 1. It reflected the relationship between 
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these variables with the pathogenicity of the disease. Furthermore, 
the distribution of allelic and genotypic frequency along with the 
association of CAT -21 A/T (rs7943316) variant/is demonstrated 
in Table 2, while the inference of the CAT -262 C/T (rs1001179) 
variant is depicted in Table 3. The genetic analysis of CAT 

-21 A/T (rs7943316) and CAT -262 C/T (rs1001179) variants 
described the pattern of genotypes in T2DM and control groups. 
The homozygosity and heterozygosity of CAT -21A/T and CAT 
-262 C/T alleles were shown by allele-specific PCR fragments in 
Figures 1 & 2 respectively.
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Table 1. Comparison/of clinical/characteristics/between/cases/and/controls. 

Characteristics T2DM  
(n = 200) 

Controls 
(n = 200) 

p-value 

Male n=94 n=92 - 

Female n=106 n=108 - 

Age 56.58 ± 10.0 52.52 ± 11.49 0.881 

Systolic/Blood/Pressure/ (mmHg) 129.4 ± 1.12 
 

121.1 ± 1.08 
 

< 0.001*** 

Diastolic/Blood/Pressure/ (mmHg) 80.45 ± 0.54 
 

79.75 ± 0.69 
 

0.431 

Body/Mass/Index/ (kg/m-2) 28.88 ± 0.43 27.81 ± 0.37 0.231 

Pulse/Rate/ (Heartbeat/min-1) 76.72 ± 0.64 75.61 ± 0.64 0.065 

Fasting/Blood/Glucose/ (mg/dl-1) 171.2 ± 2.12 82.18 ± 0.76 < 0.001*** 

Random/Blood/Glucose/ (mg/dl-1) 256.6 ± 5.80 127.7 ± 0.59 < 0.001*** 

Cholesterol (mg/dl-1) 186.1 ± 12.47 167.8 ± 10.52 0.552 

Triglycerides (mg/dl-1) 158.2 ± 6.64 86.88 ± 1.07 < 0.001*** 

High/Density/Lipoprotein (mg/dl-1) 38.36 ± 0.61 52.37 ± 0.45 < 0.001*** 

Low/Density/Lipoprotein (mg/dl-1) 135.6 ± 12.45 98.70. ± 11.13 <0.010** 
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HbA1c (%) 8.15 ± 0.96 5.39 ± 0.60 < 0.001*** 

Mean/±/Standard Deviation [**/p<0.01, /*** p<0.001] 

 

 

 

 

 

 

 

 

 

Table 2. Distribution of CAT/-21/A/T/ allelic and genotypic/frequencies/of/T2DM/and/controls. 

Genotype 
(n=400) 

T2DM 
(n=200) 

Controls 
(n=200) 

 
χ² 

OR (95%CI)   p-value p-value 

 Recessive Model 
[(AA+AT) (TT)] 

Dominant Model 
[(AA) (AT+TT)] 

TT 112 (56.0 %) 97 (48.5 %) 14.25 1.35 (0.91–2.00) 
p<0.133 

2.7 (1.06-4.77) 
p< 0.001*** 

 
<0.001*** 

AT 66 (33.0 %) 52 (26.0 %)  
AA 22 (11.0 %) 51 (25.5 %)  

Alleles (n=400) 

T 145 (72.5%) 123(61.5%)   
                   1.6 (1.0-2.5) 

 
< 0.01** A 55 (27.5 %) 77 (38.5%)  

Data presented as n (%) [** p<0.01, *** p<0.001] (T =Risk Allele, A=Protective Allele) 

 

Table 3. Distribution of CAT -262C/T allelic and genotype frequencies in T2DM and controls.  

Table 1: Comparison of Clinical Characteristics between Cases and Controls
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Figure 1. Hinf/ 1-digested electrophoretic banding pattern of CAT/-21/A/T (rs7943316) variant. 
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Figure 1: Hinf 1-Digested Electrophoretic Banding Pattern of Cat -21 A/T (Rs7943316) Variant

Marker (M): 100 bp. Lane 8, 9 & 12 were/homozygous TT mutant genotype; lane 1,  2,  10 & 11 were heterozygous- AT genotype; lane 
3-6 & 13 were homozygous AA wild type genotype.
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Figure 2: Allele-Specific Pcr Banding Pattern Of Cat-262c/T (Rs1001179) Variant

 Bands of 340 bp for C and T alleles of the same DNA samples 
showed in each column. Marker (M): 100bp, Lanes: 4-6, 8, 12 & 
14 denoted the genotype of homozygous CC; lanes 1-3, 9, 10 & 13 
represented the genotype of heterozygous CT, while lanes 7 & 11 
depicted the genotype of homozygous TT [15-18].

4. Discussion
The current study examined the association of CAT variants -21 
A/T (rs7943316) and-262 C/T (rs1001179) with/the/susceptibility 
of/T2DM. A high frequency of homozygous TT genotype of CAT 
-21 A/T variant was observed in the disease group as compared to 
controls (56.0 % vs. 48.5 %). Chi-square demonstrated the significant 
difference in the distribution of CAT -21 A/T (rs7943316) variant 
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genotypes between the groups of cases and controls (p<0.001). 
Furthermore, a significantly higher frequency of the mutant T 
allele elevated the risk of T2DM by 1.6 times as compared to wild 
type A allele (p<0.01). The genotypic frequency of the CAT -21 
A/T variant was found to be significantly different between the 
hypothetical dominant and recessive genotypic models (p< 0.05). 
A significant association of genotypes was found in the dominant 
state for the T allele in T2DM patients (p<0.001). Though, the TT 
genotype was more consistent in T2DM patients and statistically 
higher in comparison with controls. The odds ratio of the dominant 
model [(AA) (TA+TT)] indicated that the TT genotype of CAT 
(-21 A/T) variant may increase 2.7 folds risk for the onset of type 
2 diabetes (Table 2). A previous study has revealed that in the 
CAT -21 A/T variant, the TT genotype plays a prompting role with 
significantly higher frequency in the onset of diabetes as a possible 
genetic risk factor [19].  An earlier study indicated that genetic 
variants reported in the promoter region of the CAT gene were 
involved in reducing the expression of a gene [20]. Among them, 
it was revealed that the TT genotypic frequency of CAT -21 A/T  
(rs7943316) variant has 80% frequency in the subjects of T2DM 
with the diminished enzymatic activity of CAT. Increased risk of 
cerebral stroke and hypertension was observed in a study related 
to the association of CAT -21 A/T variant [21]. Whereas, Yeh et 
al., reported that there was an insignificant association between 
CAT variants of promotor region and susceptibility of coronary 
artery disease [22]. However, limited literature was found for the 
investigation of genetic models of-both CAT -21 A/T and -262 C/T 
variants in the predisposition toT2DM [23]. 

The present research also explored the distribution of another 
genetic variant CAT -262 C/T (rs1001179) which was also reported 
in the promotor region [12]. CAT -262 C/T variant has shown 
significant association against the susceptibility of T2DM. The 
distribution of CAT -262 C/T variant genotypes explained that CC 
genotypic frequency is significantly higher in the diseased group 
(64 %) than those of controls (33 %). Whereas, the frequency 
of CT genotype was inferred to be reduced in cases (27.5 %) 
in comparison to controls (47.5 %). Correspondingly, the TT 
genotypic frequency was also found to be lowered in the disease 
group (8.5 %) concerning controls (19.5 %). The chi-square test 
revealed a significant difference in the genotypic distribution of 
the CAT -262 C/T variant between the groups of cases and controls 
(χ²= 38.71, p<0.001). However, the outcomes showed that C allelic 
frequency was a significantly higher in T2DM subjects (77.5 %)
whereas allelic frequency of T allele was higher in controls (43%). 
Henceforth, it suggested a predisposing influence of the C allele, 
while the T allele was found to implement a protective impact with 
an odds ratio of 0.384 to the susceptibility of T2DM. The genetic 
models were evaluated to infer the combined effect of genotypes. 
The odds ratio of the recessive model recommended that the T 
allele produce 0.42 times higher risk than the C allele for the onset 
of type 2 diabetes mellitus (p<0.001) (Table 3). This variant was 
reported to express its functional association with the expression of 
the CAT enzyme. A significantly elevated level of CAT-enzyme was 
previously reported in the presence of homozygous TT genotype of 

CAT -262 C/T variant [24]. However, the enzyme was observed to 
be significantly reduced with the CC homozygous genotype which 
ultimately reflected its significant role in declining the expression 
of the CAT gene [25]. Another study conducted on T2DM patients 
also suggested the imperative role of the T allele of CAT -262 
C/T variant which provides resistance against the induction and 
progression of oxidative stress and its associated ailments [26]. 
Formerly, the -262 C/T genetic variant of the CAT gene has also 
been found to exert a significant impact in the modulation of 
risk for autoimmune diabetes and or related complications [27]. 
Apart from diabetes, a study reported the significant role of the 
CAT-262 variant in demolishing the susceptibility of breast 
cancer [28]. However, no evidence of association was reported 
for the susceptibility of nephropathy and retinopathy in type 
2 diabetes [29]. Catalase promoter region variants-of -21A/T- 
(rs7943316) and - 262 C/T - (rs1001179) -may cause an effect on 
the susceptibility of oxidative stress-related diseases which might 
involve in the alterations of transcription factors PAX-6-and-STAT 
4 in the presence of A and T allele [30]. The level of CAT mRNA 
was significantly affected by the occurrence of CAT -21 A/T and 
-262 C/T genetic variants found in the promotor region of the 
CAT gene [31]. Additionally, the levels of FBG, RBG, and HbA1c 
in the blood, and TG, HDL and LDL in the serum illustrates the 
significant difference between T2DM patients and controls, which 
demonstrated an association with the predisposition of the disease. 
Nevertheless, the variables of BMI, pulse rate, DBP, and total 
cholesterol reflected no significant differences between the study 
groups of T2DM and controls (Table 1).

The investigation of CAT variants showed significant genetic 
associations with the risk and pathogenicity and could be considered 
as a baseline for developing advances as a worthwhile approach in 
screening, resistance, and treatment strategies of T2DM. Hence, 
it is essential to consider the limitations before drawing the actual 
conclusions of this study. Firstly, the correlation between the 
mutant allele of two CAT variants with the expressional variability 
of CAT enzyme is important to reveal its influence in developing 
the pathogenicity of T2DM that is not explored to the studied 
variant. Secondly, the present study consists of a conserved group 
of samples for a population-based study. It is essential to undergo 
large-scale analysis for revealing interpretations with more 
accuracy and efficiency.

5. Conclusions
The findings revealed that two genetic variants of the CAT gene 
showed significant association with the pathogenesis of T2DM. 
The genetic variant of -21 A/T (rs7943316) in the promotor 
region of the CAT enzyme gene might play an effective role in 
the modulation of high risk for T2DM. Whereas, the CAT -262 
C/T (rs1001179) variant inferred a defensive role against the 
susceptibility of the disease. Hence, both variants of CAT -21 
A/T/(rs7943316) and -262 C/T (rs1001179) could be regarded 
as a prognostic antioxidant biomarkers in determining the 
predisposition of T2DM.
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Highlights
• Oxidative stress is regarded as a major pathogenic factor for the 
development of diabetes and its associated complications. 
• The antioxidant enzyme catalase diffuses the damaging effect of 
H2O2 which contributes to developing oxidative stress. 
• The Catalase enzyme gene is susceptible to developing genetic 
variations which cause the modulation of its regulation and 
expression in disease conditions.
• CAT -21A/T (rs7943316) polymorphism depicted a significant 
association with a higher risk for T2DM.
• CAT -262C/T (rs1001179) polymorphism inferred a significant 
protective role in response to the progression of T2DM.
• CAT -21 A/T and CAT -262 C/T can be considered as a potential 
biomarker in determination of susceptibility for T2DM patients. 
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