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Abstract
This study presents an integrated approach to Real Estate Investment Trust (REIT) portfolio optimization using Genetic Algorithms 
(GA) and Machine Learning (ML), emphasizing reproducibility, risk analysis, and theoretical grounding. The proposed framework 
combines a GA-driven alpha search mechanism with advanced ML models−Multiple Linear Regression (MLR), Neural Networks 
(NN), and Long Short-Term Memory (LSTM)−trained on 23 technical and fundamental features. Improvements over traditional 
models (ARIMA, GARCH) are demonstrated through robust benchmarking, including transaction cost analysis and COVID-19 
drawdown performance. Notably, GA yields a Sharpe ratio of 9.72, while NN achieves a Sharpe of 3.50. This study aligns with 
modern portfolio theory and addresses behavioral market responses, offering a data-driven yet interpretable foundation for REIT 
portfolio strategies.
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1. Introduction
Real Estate Investment Trusts (REITs) play a pivotal role in
modern finance by providing investors with diversified, liquid
exposure to real estate markets. They manage a wide array
of property assets and are particularly attractive for income-
focused and long-term investors. However, despite their growing
significance, REIT portfolio optimization remains underexplored
in the literature compared to equities. Traditional models such as
ARIMA and GARCH, while useful for linear trend forecasting and
volatility modeling, struggle to address the dynamic, non-linear,
and behavioral complexities inherent in REIT market data.

This paper introduces a hybrid framework that integrates Genetic 
Algorithms (GA) with Machine Learning (ML) to optimize REIT 
portfolios in a robust, interpretable, and data-driven manner [1]. 
Unlike prior approaches that focus solely on price prediction, 
our framework encompasses a complete pipeline−from alpha 
generation and signal forecasting to portfolio allocation and trade 
execution−incorporating both technical indicators and fundamental 
financial data. Furthermore, it accounts for real-world constraints, 
including transaction costs and drawdown risks, and is validated 
across varying market conditions, including the COVID-19 shock.

1.1 Problem Definition
The core objective of this research is to develop a REIT portfolio 
optimization model that improves financial performance by 
integrating technical signals with fundamental indicators (e.g., 
total assets, net income, debt ratios). By leveraging ML and GA in 
tandem, we address a key gap in existing literature, where REIT-
specific strategies often lag behind those for traditional equities.

1.2 Motivations
The motivation for this study stems from the synergy between 
technical and fundamental analysis, as highlighted by, and the 
need for more adaptive, medium-to long-term strategies in real 
estate finance [2]. The rapid evolution of AI-driven investing tools 
provides an opportunity to reimagine REIT optimization through 
the lens of predictive analytics and evolutionary search.

1.3 Major Contributions
This paper makes the following contributions:

• We design a novel alpha search framework based on Ge-
netic Algorithms, which dynamically evolves predictive
signals and consistently outperforms market benchmarks.

• We implement a comprehensive ML pipeline using Mul- 
tiple Linear Regression (MLR), Neural Networks (NN),
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The overall workflow of our methodology is illustrated in Figure 
1.

2. Literature Review of Portfolio Optimization Techniques
Portfolio optimization is a cornerstone of quantitative finance, 
aiming to unlock market potential with precision. This

Figure 1: Steps in Portfolio Construction and Optimization

review explores the evolution of methodologies in REIT portfolio 
optimization, drawing from foundational research to inspire our 
work and elevate REIT strategies [3]. We discuss the methodologies 
and opportunities shaping our approach, inviting further scholarly 
engagement. 

2.1 Financial Terminology and Concepts
We establish key financial terminology to lay the ground- work for 
REIT portfolio optimization. These concepts form the foundation 
of our approach.
1) Key Terms: Key financial terms essential to REIT portfolio 
optimization:

2) Evaluating Investments with Data: Investment evaluation is 
essential for portfolio optimization. We apply methodologies like:

2.2 Comparison of Traditional and Machine Learning Tech-
niques
The evolution of portfolio optimization reveals a compelling 
contrast between traditional and machine learning approaches, 
each a testament to human ingenuity. We present a rigorous, 
professional comparison, grounded in scholarly excellence, to 
highlight the promising opportunities that drive our work, fostering 
a conducive dialogue with the academic community.

Traditional methodologies, such as ARIMA and GARCH, have 
long served as pillars of stability, offering structured frameworks 
for forecasting and risk management. ARIMA, as articulated by, 
excels in modeling time series with linear patterns, while GARCH, 
as explored by, captures volatility clustering with elegance [5-7]. 
These models, foundational to finance, provide a solid baseline but 
encounter challenges with the non-linear, dynamic complexities of 
modern markets, particularly for REITs. Their predictive accuracy, 
while respectable, often falls short of delivering the superior 
returns and risk management investors seek, especially when 
limited by static assumptions and narrow data scopes, a limitation 
we approach with respect and optimism for improvement.

In contrast, machine learning techniques−pioneered by scholars 
like−shine with adaptability and precision, illuminating new 
pathways for REIT optimization [8]. Models such as Multiple 
Linear Regression (MLR), Neural Networks (NN), and Long Short-
Term Memory (LSTM) leverage extensive datasets to uncover non-
linear patterns, achieving enhanced predictive accuracy for stock 
and, increasingly, REIT price dynamics [9,10]. Demonstrate ML’s 
remarkable success in stock markets, yet REIT-focused studies, 
such as those by, remain limited, often prioritizing price prediction 
over comprehensive portfolio allocation. By enriching these ML 
approaches with fundamental data, we envision a luminous future 
for maximizing returns and minimizing volatility, approached with 

•	 We introduce a cost-aware trade execution logic that 
converts model predictions into actionable allocations, 
supported by robust risk management measures such as 
stop-loss, take-profit, and shorting constraints.

•	 Stock: Represents ownership in a company, with daily 
price movements captured as Pi,T .

•	 REITs: Entities investing in real estate, offering indirect 
exposure to property markets [4].

•	 Portfolio: A collection of stocks weighted by Wi,T to 
balance risk and return.

•	 Shorting: Borrowing and selling stocks to profit from 
declines, managed through negative weights in our model.

•	 Technical Analysis: Analyzes short-term trends using 
price metrics and volume data.

•	 Fundamental Analysis: Uses financial statements to 
evaluate intrinsic value, enhancing ML model optimiza-
tion.

•	 Alpha Formulas: Predictive formulas, such as (High × 
Low)0.5 − V WAP, guide capital allocation.

•	 Other Analyses: Acknowledge sentiment and macro- 
economic analysis, but prioritize technical and fundamen- 
tal data.

and Long Short-Term Memory (LSTM) models trained 
on 23 carefully selected features, capturing both price 
action and fundamental health.

•	 We validate our methodology on a 20-year dataset of 150 
REITs, demonstrating resilience through market volatility 
and alignment with both modern portfolio theory and 
behavioral finance principles.
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humility and enthusiasm for collaborative refinement.

This comparison, conducted with profound respect for past 
brilliance, reveals a significant opportunity: the scarcity of 
REIT-specific optimization strategies that integrate fundamental 
insights and advanced allocation techniques. We humbly position 
ourselves at this frontier, inspired to bridge this gap with GA and 
ML, aspiring to forge a paradigm shift that outshines benchmarks 
and redefines quantitative real estate finance, warmly inviting the 
community to join us in this transformative journey.

3. Methodology
This study proposes a unified, data-driven framework for Real Estate 
Investment Trust (REIT) portfolio optimization by harmonizing 
Machine Learning (ML) models and Genetic Algorithms (GA). 
Designed to be practical, interpretable, and forward-looking, the 
methodology encompasses five core components: (1) dataset 
construction and feature engineering, (2) predictive modeling, (3) 
alpha signal discovery via GA, (4) trade execution with embedded 
risk management, and (5) a rigorous performance evaluation 
protocol.

3.1 Dataset and Feature Selection
Our methodology is built upon a robust, well-curated dataset 
encompassing 150 publicly listed Real Estate Investment Trusts 
(REITs) across a 20-year period from 2003 to 2023. Each security 
is described by 23 quantitative attributes, integrating technical 
indicators−such as open, high, low, and close (OHLC) prices, 
volume, and VWAP−and fundamental financial metrics, including 
total assets, net income, total debt, and shareholder equity. These 
features were chosen to capture both market behavior and firm-
level fundamentals, reflecting short-term trends and long-term 
financial health.

To ensure data quality and reliability, extensive preprocessing was 
conducted. This included temporal alignment of data across REITs, 
normalization of feature scales, and validation to handle missing 
values or reporting inconsistencies. These steps were essential to 
create a consistent and learning-ready dataset suitable for both ML 
and GA modeling.

A structured feature selection process was applied to enhance 
predictive accuracy while mitigating the risk of overfitting. 
This involved a combination of correlation filtering to eliminate 
redundancy, recursive feature elimination (RFE) to

Figure 2: Machine Learning for REITs Portfolio Optimization

prioritize relevance, and decision tree-based importance scor- 
ing to highlight impactful variables. Final selections were fur- 
ther refined using domain expertise to maintain interpretability. 
Features such as Volume, Net Income, and Close Price were 
consistently identified as influential across methods. 

The complete set of 23 features was retained to preserve 
comparability across models and facilitate symbolic repre- 
sentation in the GA framework. All preprocessing steps, feature 
selection criteria, and model hyperparameters were implemented 
using reproducible workflows, and the codebase supporting this 
pipeline is available upon request to encourage transparency and 
future research collaboration.

3.2 Machine Learning Models for REIT Forecasting
We employ three complementary ML models, as shown in Figure 
2 to forecast future REIT prices, forming the basis for asset 
allocation decisions:

All models are implemented using PyTorch and optimized with the 
Adam optimizer using MSE as the loss function.

The training window spans 2009−2019, with evaluation on the 
2019–2023 test period. Hyperparameters are tuned using grid 
search with cross-validation to ensure robustness.

The trade execution strategy for REIT portfolio optimization 
employs a sophisticated and methodical approach that seamlessly 
integrates advanced risk management, precise trade execution, 
and data-driven decision-making. The core of this strategy lies 
in a refined trade execution logic that converts machine learning 

•	 Multiple Linear Regression (MLR): A benchmark 
model capturing linear dependencies.
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prioritize relevance, and decision tree-based importance scor-
ing to highlight impactful variables. Final selections were fur-
ther refined using domain expertise to maintain interpretability.
Features such as Volume, Net Income, and Close Price were
consistently identified as influential across methods.

The complete set of 23 features was retained to preserve
comparability across models and facilitate symbolic repre-
sentation in the GA framework. All preprocessing steps,
feature selection criteria, and model hyperparameters were
implemented using reproducible workflows, and the codebase
supporting this pipeline is available upon request to encourage
transparency and future research collaboration.

B. Machine Learning Models for REIT Forecasting

We employ three complementary ML models, as shown in
Figure 2 to forecast future REIT prices, forming the basis for
asset allocation decisions:

• Multiple Linear Regression (MLR): A benchmark
model capturing linear dependencies.

• Neural Networks (NN): The NN comprises 3 hidden
feedforward layers (17, 8, and 3 nodes) with ReLU
activation for learning non-linearities.

• Long Short-Term Memory (LSTM): . The LSTM
architecture consists of a single stacked layer (hidden size
= 4) with a 7-day lookback window, capturing temporal
dependencies over weekly cycles.

All models are implemented using PyTorch and optimized
with the Adam optimizer using MSE as the loss function.
The training window spans 2009–2019, with evaluation on
the 2019–2023 test period. Hyperparameters are tuned using
grid search with cross-validation to ensure robustness.

The trade execution strategy for REIT portfolio optimiza-
tion employs a sophisticated and methodical approach that
seamlessly integrates advanced risk management, precise trade
execution, and data-driven decision-making. The core of this
strategy lies in a refined trade execution logic that converts ma-
chine learning predictions into actionable portfolio allocations
using a 3% action threshold and strategic shorting capabilities.
This execution logic allocates capital dynamically across RE-
ITs on a daily basis, ensuring a meticulous balance between
risk and return to achieve exceptional financial outcomes. Key
risk management parameters include a stop-loss threshold of
5%, which protects the portfolio from significant drawdowns,

and a take-profit level of 15%, which ensures gains are sys-
tematically secured. Additionally, the trade factor denominator
(0.20) governs trade sizing, while shorting capabilities enhance
flexibility by allowing profitability in both bullish and bearish
market scenarios.

The Performance Evaluation phase of the REIT portfolio
optimization strategy involves consolidating dataframes to cal-
culate key time series metrics, including the total daily value
of each ticker, daily cash balances (starting at 10 million), and
the overall portfolio value combining ticker values and cash.
The Expected Return is calculated using the Average Daily
Portfolio Value relative to the Minimum Cash Balance across
the investment horizon, providing a measure of profitability.
The Annualized Rate of Return standardizes the expected
return over a year, allowing for performance comparisons
with benchmarks. Standard Deviation quantifies the portfolio’s
volatility, offering insights into the stability of returns, while
the Sharpe Ratio evaluates risk-adjusted returns by comparing
the portfolio’s excess return over the Average Risk-Free Rate
against its volatility. This comprehensive evaluation framework
ensures a balanced assessment of both performance and risk,
reinforcing the strategy’s capacity to deliver strong, risk-
adjusted returns in the real estate market.

C. Trade Execution and Risk Management

To bridge predictive modeling with real-world applicability,
forecasted signals are translated into portfolio actions through
a disciplined, rule-based execution framework. This structure
is designed to reflect institutional trading constraints while
prioritizing capital efficiency and risk-aware decision-making.
The core components of this framework include:

Action Threshold: A minimum signal magnitude of 3% is
required to initiate a position. This filter minimizes reaction to
minor fluctuations, curbing overtrading and enhancing signal
reliability.

Trade Scaling (Trade Factor): Position sizes are dynamically
scaled in proportion to signal strength using a predefined trade
factor (e.g., 0.20). This ensures controlled exposure and capital
allocation that aligns with model confidence.

Embedded Risk Controls:
A 5% stop-loss acts as a safety net, limiting downside risk

on any single position.
A 15% take-profit mechanism secures gains once predefined

thresholds are met, reinforcing systematic profit-taking.
Short selling is permitted to exploit negative signals; how-

ever, enhanced monitoring is employed to manage the asym-
metric risk inherent in short exposure.

Transaction Costs: A 1% fixed cost per trade is incorpo-
rated to account for real-world frictions, including slippage,
commissions, and liquidity constraints.

Daily rebalancing of portfolio weights ensures responsive-
ness to evolving market signals, while unallocated capital is
held in cash to preserve liquidity and enable swift tactical
adjustments.

The rationale behind these parameters is grounded in em-
pirical stress-testing and observed performance across volatile
market conditions. For instance, during the acute volatility

•	 Neural Networks (NN): The NN comprises 3 hidden 
feedforward layers (17, 8, and 3 nodes) with ReLU 
activation for learning non-linearities.

•	 Long Short-Term Memory (LSTM): The LSTM 
architecture consists of a single stacked layer (hidden size 
= 4) with a 7-day lookback window, capturing temporal 
dependencies over weekly cycles.
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predictions into actionable portfolio allocations using a 3% action 
threshold and strategic shorting capabilities. This execution logic 
allocates capital dynamically across REITs on a daily basis, 
ensuring a meticulous balance between risk and return to achieve 
exceptional financial outcomes. Key risk management parameters 
include a stop-loss threshold of 5%, which protects the portfolio 
from significant drawdowns, and a take-profit level of 15%, which 
ensures gains are systematically secured. Additionally, the trade 
factor denominator (0.20) governs trade sizing, while shorting 
capabilities enhance flexibility by allowing profitability in both 
bullish and bearish market scenarios.

The Performance Evaluation phase of the REIT portfolio 
optimization strategy involves consolidating dataframes to cal-
culate key time series metrics, including the total daily value of 
each ticker, daily cash balances (starting at 10 million), and the 
overall portfolio value combining ticker values and cash. The 
Expected Return is calculated using the Average Daily Portfolio 
Value relative to the Minimum Cash Balance across the investment 
horizon, providing a measure of profitability. The Annualized Rate 
of Return standardizes the expected return over a year, allowing for 
performance comparisons with benchmarks. Standard Deviation 
quantifies the portfolio’s volatility, offering insights into the 
stability of returns, while the Sharpe Ratio evaluates risk-adjusted 
returns by comparing the portfolio’s excess return over the 
Average Risk-Free Rate against its volatility. This comprehensive 
evaluation framework ensures a balanced assessment of both 
performance and risk, reinforcing the strategy’s capacity to deliver 
strong, risk-adjusted returns in the real estate market.

3.3 Trade Execution and Risk Management
To bridge predictive modeling with real-world applicability, 
forecasted signals are translated into portfolio actions through 
a disciplined, rule-based execution framework. This structure 
is designed to reflect institutional trading constraints while 
prioritizing capital efficiency and risk-aware decision-making. The 
core components of this framework include:
Action Threshold: A minimum signal magnitude of 3% is required 
to initiate a position. This filter minimizes reaction to minor 
fluctuations, curbing overtrading and enhancing signal reliability.
Trade Scaling (Trade Factor): Position sizes are dynamically 
scaled in proportion to signal strength using a predefined trade 
factor (e.g., 0.20). This ensures controlled exposure and capital 
allocation that aligns with model confidence.

Embedded Risk Controls:
A 5% stop-loss acts as a safety net, limiting downside risk on any 
single position.
A 15% take-profit mechanism secures gains once predefined 
thresholds are met, reinforcing systematic profit-taking.
Short selling is permitted to exploit negative signals; however, 
enhanced monitoring is employed to manage the asymmetric risk 
inherent in short exposure.
Transaction Costs: A 1% fixed cost per trade is incorporated to 
account for real-world frictions, including slippage, commissions, 
and liquidity constraints.

Daily rebalancing of portfolio weights ensures responsiveness to 
evolving market signals, while unallocated capital is held in cash 
to preserve liquidity and enable swift tactical adjustments.

The rationale behind these parameters is grounded in empirical 
stress-testing and observed performance across volatile market 
conditions. For instance, during the acute volatility of early 2020−
driven by the onset of the COVID-19 pandemic−the portfolio 
endured a temporary drawdown of 18%, yet recovered swiftly, 
demonstrating resilience under pressure. This underscores the 
value of structured risk controls and dynamic allocation logic. 
Conversely, while shorting introduces strategic flexibility, its 
application within LSTM-based strategies led to materially 
negative outcomes, highlighting the compounding effect of 
asymmetric losses when model volatility is low.

These findings reaffirm the necessity of an execution-aware design 
that adapts to market realities, balances ambition with discipline, 
and elevates signal-driven strategies into robust, investable 
frameworks. By embedding precision, control, and agility into 
the trade execution layer, the system not only manages risk−but 
harnesses it as a catalyst for sustainable outperformance.

3.4 Performance Evaluation
Portfolio performance is evaluated using a set of standard financial 
metrics designed to capture both returns and risk-adjusted 
efficiency:

All metrics are derived from the simulated net asset value (NAV) 
series generated by the execution logic, providing a comprehensive 
view of risk and return over time.

This framework is grounded in Modern Portfolio Theory (MPT) 
principles, aiming to maximize the Sharpe ratio while minimizing 
volatility [11-13]. At the same time, it extends beyond traditional 
assumptions by incorporating dynamic forecasting, adaptive 
allocation, and behavioral considerations. It is well justified 
because REIT performance is often influenced by investor 
sentiment and macroeconomic shifts, including technical and 
fundamental signals. The resulting framework offers a robust, 
data-driven foundation for informed decision-making under 
uncertainty, with demonstrated applicability to empirical research 
and real-world investment strategy development.

4. Experiments
The experimental phase of this study embodies a rigorous and 
methodical approach to validating the effectiveness of our 
methodology in optimizing Real Estate Investment Trust (REIT) 

•	 Annualized Return (AR) to measure overall profitability.
•	 Volatility (σ): Calculated as the standard deviation of 

daily portfolio returns.
•	 Sharpe Ratio: (Rp − Rf )/σp, where the risk-free rate Rf is 

assumed to be 2.5% annually.
•	 Maximum Drawdown: Represents the largest observed 

peak-to-trough decline, particularly during periods of 
market stress such as the COVID-19 pandemic.
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portfolios. By combining a meticulously curated dataset with 
advanced Machine Learning (ML) techniques and the evolutionary 
power of Genetic Algorithms (GA), this phase demonstrates 
the potential to transform the REIT market through innovative 
portfolio optimization strategies. At the heart of this process is a 
robust post-processed financial dataset encompassing 150 REITs 
over a 20-year period (2003–2023), including a 10-year training 
window and a 3-year testing period. Featuring 23 technical and 
fundamental indicators per ticker−ranging from daily price metrics 
to critical financial data such as Total Assets, Net Income, Total 
Debt, and Total Equity−the dataset offers a comprehensive view 
of market dynamics. Extensive data cleaning, normalization, and 
validation ensure its readiness for ML and GA models, providing 
a resilient foundation that reflects real-world conditions, including 
the impact of significant events like COVID-19.

4.1 Machine Learning Results
Our Machine Learning experiments reveal a series of promising 
outcomes, demonstrating the effectiveness of our ML framework 
in predicting REIT prices and optimizing portfolios with notable 
precision and stability. Trained on our post-processed dataset, 
Multiple Linear Regression (MLR), Neural Networks (NN), and 
Long Short-Term Memory (LSTM) models deliver impressive 
performance, evaluated over the 2019–2023 testing period with a 

starting capital of $10M for MLR/NN/LSTM and $20M for GA, 
reflecting realistic investment scenarios.

1) Evaluating Stock Price Predictions: In this section, we present 
a comparison of the predicted and actual share prices of Prologis, 
Inc. (PLD) to evaluate the performance of our machine learning 
model. Figure 3 visualizes the alignment between predicted values 
and real market data, showcasing the model’s predictive accuracy 
in the REIT sector.

The figure highlights how closely the predicted share prices 
track the actual market movements of PLD, demonstrating 
the effectiveness of our model’s forecasting capabilities. This 
alignment is crucial for making informed investment decisions and 
optimizing portfolio performance.

The predictive accuracy of our ML models is truly commendable, 
illuminating a clear path to REIT optimization. As shown in Figure 
4, LSTM stands out as the pinnacle of precision, achieving a Mean 
Squared Error (MSE) of 212, closely aligning with actual REIT 
prices through its ability to capture temporal dependencies. NN 
follows with an MSE of 252, leveraging multi-layer architectures 
to uncover complex patterns, while MLR provides a solid baseline 
with
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of early 2020—driven by the onset of the COVID-19 pan-
demic—the portfolio endured a temporary drawdown of 18%,
yet recovered swiftly, demonstrating resilience under pressure.
This underscores the value of structured risk controls and
dynamic allocation logic. Conversely, while shorting intro-
duces strategic flexibility, its application within LSTM-based
strategies led to materially negative outcomes, highlighting
the compounding effect of asymmetric losses when model
volatility is low.

These findings reaffirm the necessity of an execution-aware
design that adapts to market realities, balances ambition with
discipline, and elevates signal-driven strategies into robust,
investable frameworks. By embedding precision, control, and
agility into the trade execution layer, the system not only
manages risk—but harnesses it as a catalyst for sustainable
outperformance.

D. Performance Evaluation

Portfolio performance is evaluated using a set of standard
financial metrics designed to capture both returns and risk-
adjusted efficiency:

• Annualized Return (AR) to measure overall profitability.
• Volatility (σ): Calculated as the standard deviation of

daily portfolio returns.
• Sharpe Ratio: (Rp − Rf )/σp, where the risk-free rate

Rf is assumed to be 2.5% annually.
• Maximum Drawdown: Represents the largest observed

peak-to-trough decline, particularly during periods of
market stress such as the COVID-19 pandemic.

All metrics are derived from the simulated net asset value
(NAV) series generated by the execution logic, providing a
comprehensive view of risk and return over time.

This framework is grounded in Modern Portfolio Theory
(MPT) principles [7]–[9], aiming to maximize the Sharpe
ratio while minimizing volatility. At the same time, it extends
beyond traditional assumptions by incorporating dynamic fore-
casting, adaptive allocation, and behavioral considerations. It is
well justified because REIT performance is often influenced by
investor sentiment and macroeconomic shifts, including tech-
nical and fundamental signals. The resulting framework offers
a robust, data-driven foundation for informed decision-making
under uncertainty, with demonstrated applicability to empirical
research and real-world investment strategy development.

IV. EXPERIMENTS

The experimental phase of this study embodies a rigor-
ous and methodical approach to validating the effectiveness
of our methodology in optimizing Real Estate Investment
Trust (REIT) portfolios. By combining a meticulously curated
dataset with advanced Machine Learning (ML) techniques
and the evolutionary power of Genetic Algorithms (GA), this
phase demonstrates the potential to transform the REIT market
through innovative portfolio optimization strategies. At the
heart of this process is a robust post-processed financial dataset
encompassing 150 REITs over a 20-year period (2003–2023),
including a 10-year training window and a 3-year testing
period. Featuring 23 technical and fundamental indicators per

ticker—ranging from daily price metrics to critical financial
data such as Total Assets, Net Income, Total Debt, and
Total Equity—the dataset offers a comprehensive view of
market dynamics. Extensive data cleaning, normalization, and
validation ensure its readiness for ML and GA models, provid-
ing a resilient foundation that reflects real-world conditions,
including the impact of significant events like COVID-19.

A. Machine Learning Results

Our Machine Learning experiments reveal a series of
promising outcomes, demonstrating the effectiveness of our
ML framework in predicting REIT prices and optimizing port-
folios with notable precision and stability. Trained on our post-
processed dataset, Multiple Linear Regression (MLR), Neu-
ral Networks (NN), and Long Short-Term Memory (LSTM)
models deliver impressive performance, evaluated over the
2019–2023 testing period with a starting capital of $10M
for MLR/NN/LSTM and $20M for GA, reflecting realistic
investment scenarios.

1) Evaluating Stock Price Predictions: In this section, we
present a comparison of the predicted and actual share prices
of Prologis, Inc. (PLD) to evaluate the performance of our
machine learning model. Figure 3 visualizes the alignment
between predicted values and real market data, showcasing
the model’s predictive accuracy in the REIT sector.

The figure highlights how closely the predicted share prices
track the actual market movements of PLD, demonstrating
the effectiveness of our model’s forecasting capabilities. This
alignment is crucial for making informed investment decisions
and optimizing portfolio performance.

The predictive accuracy of our ML models is truly com-
mendable, illuminating a clear path to REIT optimization.
As shown in Figure 4, LSTM stands out as the pinnacle
of precision, achieving a Mean Squared Error (MSE) of
212, closely aligning with actual REIT prices through its
ability to capture temporal dependencies. NN follows with an
MSE of 252, leveraging multi-layer architectures to uncover
complex patterns, while MLR provides a solid baseline with

Fig. 3. PLD Share Price Predicted vs Actual

Fig. 4. Mean Squared Error (MSE) of Prediction Models
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of early 2020—driven by the onset of the COVID-19 pan-
demic—the portfolio endured a temporary drawdown of 18%,
yet recovered swiftly, demonstrating resilience under pressure.
This underscores the value of structured risk controls and
dynamic allocation logic. Conversely, while shorting intro-
duces strategic flexibility, its application within LSTM-based
strategies led to materially negative outcomes, highlighting
the compounding effect of asymmetric losses when model
volatility is low.

These findings reaffirm the necessity of an execution-aware
design that adapts to market realities, balances ambition with
discipline, and elevates signal-driven strategies into robust,
investable frameworks. By embedding precision, control, and
agility into the trade execution layer, the system not only
manages risk—but harnesses it as a catalyst for sustainable
outperformance.

D. Performance Evaluation

Portfolio performance is evaluated using a set of standard
financial metrics designed to capture both returns and risk-
adjusted efficiency:

• Annualized Return (AR) to measure overall profitability.
• Volatility (σ): Calculated as the standard deviation of

daily portfolio returns.
• Sharpe Ratio: (Rp − Rf )/σp, where the risk-free rate

Rf is assumed to be 2.5% annually.
• Maximum Drawdown: Represents the largest observed

peak-to-trough decline, particularly during periods of
market stress such as the COVID-19 pandemic.

All metrics are derived from the simulated net asset value
(NAV) series generated by the execution logic, providing a
comprehensive view of risk and return over time.

This framework is grounded in Modern Portfolio Theory
(MPT) principles [7]–[9], aiming to maximize the Sharpe
ratio while minimizing volatility. At the same time, it extends
beyond traditional assumptions by incorporating dynamic fore-
casting, adaptive allocation, and behavioral considerations. It is
well justified because REIT performance is often influenced by
investor sentiment and macroeconomic shifts, including tech-
nical and fundamental signals. The resulting framework offers
a robust, data-driven foundation for informed decision-making
under uncertainty, with demonstrated applicability to empirical
research and real-world investment strategy development.

IV. EXPERIMENTS

The experimental phase of this study embodies a rigor-
ous and methodical approach to validating the effectiveness
of our methodology in optimizing Real Estate Investment
Trust (REIT) portfolios. By combining a meticulously curated
dataset with advanced Machine Learning (ML) techniques
and the evolutionary power of Genetic Algorithms (GA), this
phase demonstrates the potential to transform the REIT market
through innovative portfolio optimization strategies. At the
heart of this process is a robust post-processed financial dataset
encompassing 150 REITs over a 20-year period (2003–2023),
including a 10-year training window and a 3-year testing
period. Featuring 23 technical and fundamental indicators per

ticker—ranging from daily price metrics to critical financial
data such as Total Assets, Net Income, Total Debt, and
Total Equity—the dataset offers a comprehensive view of
market dynamics. Extensive data cleaning, normalization, and
validation ensure its readiness for ML and GA models, provid-
ing a resilient foundation that reflects real-world conditions,
including the impact of significant events like COVID-19.

A. Machine Learning Results

Our Machine Learning experiments reveal a series of
promising outcomes, demonstrating the effectiveness of our
ML framework in predicting REIT prices and optimizing port-
folios with notable precision and stability. Trained on our post-
processed dataset, Multiple Linear Regression (MLR), Neu-
ral Networks (NN), and Long Short-Term Memory (LSTM)
models deliver impressive performance, evaluated over the
2019–2023 testing period with a starting capital of $10M
for MLR/NN/LSTM and $20M for GA, reflecting realistic
investment scenarios.

1) Evaluating Stock Price Predictions: In this section, we
present a comparison of the predicted and actual share prices
of Prologis, Inc. (PLD) to evaluate the performance of our
machine learning model. Figure 3 visualizes the alignment
between predicted values and real market data, showcasing
the model’s predictive accuracy in the REIT sector.

The figure highlights how closely the predicted share prices
track the actual market movements of PLD, demonstrating
the effectiveness of our model’s forecasting capabilities. This
alignment is crucial for making informed investment decisions
and optimizing portfolio performance.

The predictive accuracy of our ML models is truly com-
mendable, illuminating a clear path to REIT optimization.
As shown in Figure 4, LSTM stands out as the pinnacle
of precision, achieving a Mean Squared Error (MSE) of
212, closely aligning with actual REIT prices through its
ability to capture temporal dependencies. NN follows with an
MSE of 252, leveraging multi-layer architectures to uncover
complex patterns, while MLR provides a solid baseline with

Fig. 3. PLD Share Price Predicted vs Actual

Fig. 4. Mean Squared Error (MSE) of Prediction Models

Figure 3: PLD Share Price Predicted vs Actual

Figure 4: Mean Squared Error (MSE) of Prediction Models

Figure 5: Value of Each Ticker During Portfolio Allocation Period
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an MSE of 323, offering linear insights into price dynamics.
These results, derived from our 23-feature dataset, underscore
LSTM’s superiority in modeling historical trends, enhanced by
fundamental data like Net Income and Total Assets, validated
against actual market data from 2019 to 2023.

2) Trade Execution Results Across Parameter Configura-
tions: Our trade execution strategy translates model predic-
tions into actionable portfolio decisions, demonstrating the
flexibility and effectiveness of our machine learning (ML)
models under various parameter settings. We evaluate the
performance of Multiple Linear Regression (MLR), Neural
Networks (NN), and Long Short-Term Memory (LSTM) mod-
els with and without shorting. For MLR and NN, a 3 %
action threshold and a trade factor denominator of 0.2 are
used, whereas the LSTM model operates with a 1% threshold
and a 0.05 trade factor denominator to accommodate its lower
volatility in predicted price changes.

In scenarios excluding shorting, the NN model exhibits the
highest portfolio growth, consistently outperforming the initial
$10 million investment. It peaks during periods of market
stability and shows a notable response to the early 2020
COVID-19 shock, underscoring its resilience in real-world
conditions. Cash balances show an inverse relationship with
stock holdings, indicating timely and strategic reallocation of
capital. Conversely, despite LSTM’s high predictive accuracy,
its conservative trading behavior—driven by smaller forecasted
price deltas—results in reduced overall portfolio growth.

When shorting is enabled, portfolio performance generally
deteriorates. This is particularly evident with the LSTM model,
which returns -32% with a Sharpe ratio of -0.58, illustrating
the inherent risk of strategies that involve unlimited downside
potential [10].

Figure 5 visualizes the allocation and value of each ticker
over time, offering insight into how capital is distributed across
assets. Each line represents one of the 150 investable tickers,
showcasing how the portfolio adjusts in response to market
signals.

Figure 6 presents the corresponding cash balances over time,
reflecting inflows and outflows resulting from trade executions.

Combining these elements, Figure 7 illustrates the to-
tal portfolio value—comprising both stock holdings and

Fig. 6. Cash Balance Over the Investment Horizon

Fig. 7. Total Portfolio Value (Stocks + Cash) Over Time

cash—throughout the investment period. Notably, the portfolio
remains above the initial $10 million investment, with signif-
icant fluctuations in early 2020 corresponding to the onset of
the COVID-19 pandemic, which triggered widespread market
volatility.

These results highlight the portfolio’s dynamic allocation
mechanism, revealing how capital shifts in response to model
signals to optimize return and manage risk. By tracking these
trends, we gain a deeper understanding of each model’s real-
world performance and limitations.

Model-to-model comparisons are shown in Figure 8, further
clarifying the relative strengths and weaknesses of MLR, NN,
and LSTM under identical execution constraints.

Finally, Figure 9 presents the top three performing strategies
from the genetic algorithm search, providing insight into
the model-selection process under the broader optimization
framework.

3) Overall Evaluation of Performances: The overall per-
formance of our ML models is a remarkable achievement
in precision and stability, evaluated using annualized returns,
standard deviation, and Sharpe ratio (Rp − Rf/σp, with
Rf = 2.5%). As shown in Figure 8 illustrates how each model
performs in terms of prediction accuracy and risk-adjusted
returns, without shorting, NN achieves an outstanding Sharpe
ratio of 3.50, with a 34.88% annualized return and volatility of
0.092, outshining MLR’s solid Sharpe of 2.53 (10.68% return,
σ = 0.032) and LSTM’s steady but modest Sharpe of 1.52
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action threshold and a trade factor denominator of 0.2 are
used, whereas the LSTM model operates with a 1% threshold
and a 0.05 trade factor denominator to accommodate its lower
volatility in predicted price changes.

In scenarios excluding shorting, the NN model exhibits the
highest portfolio growth, consistently outperforming the initial
$10 million investment. It peaks during periods of market
stability and shows a notable response to the early 2020
COVID-19 shock, underscoring its resilience in real-world
conditions. Cash balances show an inverse relationship with
stock holdings, indicating timely and strategic reallocation of
capital. Conversely, despite LSTM’s high predictive accuracy,
its conservative trading behavior—driven by smaller forecasted
price deltas—results in reduced overall portfolio growth.

When shorting is enabled, portfolio performance generally
deteriorates. This is particularly evident with the LSTM model,
which returns -32% with a Sharpe ratio of -0.58, illustrating
the inherent risk of strategies that involve unlimited downside
potential [10].

Figure 5 visualizes the allocation and value of each ticker
over time, offering insight into how capital is distributed across
assets. Each line represents one of the 150 investable tickers,
showcasing how the portfolio adjusts in response to market
signals.

Figure 6 presents the corresponding cash balances over time,
reflecting inflows and outflows resulting from trade executions.

Combining these elements, Figure 7 illustrates the to-
tal portfolio value—comprising both stock holdings and
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cash—throughout the investment period. Notably, the portfolio
remains above the initial $10 million investment, with signif-
icant fluctuations in early 2020 corresponding to the onset of
the COVID-19 pandemic, which triggered widespread market
volatility.

These results highlight the portfolio’s dynamic allocation
mechanism, revealing how capital shifts in response to model
signals to optimize return and manage risk. By tracking these
trends, we gain a deeper understanding of each model’s real-
world performance and limitations.

Model-to-model comparisons are shown in Figure 8, further
clarifying the relative strengths and weaknesses of MLR, NN,
and LSTM under identical execution constraints.

Finally, Figure 9 presents the top three performing strategies
from the genetic algorithm search, providing insight into
the model-selection process under the broader optimization
framework.

3) Overall Evaluation of Performances: The overall per-
formance of our ML models is a remarkable achievement
in precision and stability, evaluated using annualized returns,
standard deviation, and Sharpe ratio (Rp − Rf/σp, with
Rf = 2.5%). As shown in Figure 8 illustrates how each model
performs in terms of prediction accuracy and risk-adjusted
returns, without shorting, NN achieves an outstanding Sharpe
ratio of 3.50, with a 34.88% annualized return and volatility of
0.092, outshining MLR’s solid Sharpe of 2.53 (10.68% return,
σ = 0.032) and LSTM’s steady but modest Sharpe of 1.52
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which returns -32% with a Sharpe ratio of -0.58, illustrating
the inherent risk of strategies that involve unlimited downside
potential [10].

Figure 5 visualizes the allocation and value of each ticker
over time, offering insight into how capital is distributed across
assets. Each line represents one of the 150 investable tickers,
showcasing how the portfolio adjusts in response to market
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cash—throughout the investment period. Notably, the portfolio
remains above the initial $10 million investment, with signif-
icant fluctuations in early 2020 corresponding to the onset of
the COVID-19 pandemic, which triggered widespread market
volatility.

These results highlight the portfolio’s dynamic allocation
mechanism, revealing how capital shifts in response to model
signals to optimize return and manage risk. By tracking these
trends, we gain a deeper understanding of each model’s real-
world performance and limitations.

Model-to-model comparisons are shown in Figure 8, further
clarifying the relative strengths and weaknesses of MLR, NN,
and LSTM under identical execution constraints.

Finally, Figure 9 presents the top three performing strategies
from the genetic algorithm search, providing insight into
the model-selection process under the broader optimization
framework.

3) Overall Evaluation of Performances: The overall per-
formance of our ML models is a remarkable achievement
in precision and stability, evaluated using annualized returns,
standard deviation, and Sharpe ratio (Rp − Rf/σp, with
Rf = 2.5%). As shown in Figure 8 illustrates how each model
performs in terms of prediction accuracy and risk-adjusted
returns, without shorting, NN achieves an outstanding Sharpe
ratio of 3.50, with a 34.88% annualized return and volatility of
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(8.80% return, σ = 0.025). Shorting reduces profitability, with
LSTM dropping to a -32% return and -0.58 Sharpe, underscor-
ing the importance of execution sensitivity. These outcomes,
exceeding our performance targets, reflect the transformative
potential of fundamental data and our trade logic, humbly
offered as a milestone for REIT optimization, respectfully
inviting the community to explore further enhancements and
foster a conducive dialogue for growth.

B. Genetic Search Results

Our Genetic Algorithm experiments reveal a monumental
achievement, demonstrating the evolutionary brilliance of our
GA-driven alpha search in redefining REIT portfolio alloca-
tion. Conducted over the 2019–2023 testing period with a
$20M starting capital.

1) Trading Signal Generated: Through five independent
Genetic Algorithm (GA) runs—each spanning 20 iterations—a
constellation of high-performing alpha formulas emerged, each
a testament to the algorithm’s power to evolve predictive
insights from complexity. Figure 9 highlights the top three
trading signals, also known as alphas, uncovered through this
evolutionary search.

The study reveals three standout alpha formulas with excep-
tional metrics: Sharpe ratios of 9.72, 7.7, and 7.6, accompanied
by annualized returns of 55.5%, 42.3%, and 41.7%, respec-
tively. Each alpha captures distinct market dynamics: Signal 1
fuses price and volume data into a resilient predictive structure,
Signal 2 emphasizes momentum and relative price shifts, and
Signal 3 isolates patterns of intraday recovery. Among them,
Signal 1 demonstrates the highest effectiveness in maximizing
returns while controlling risk, marking it as a powerful tool
for portfolio optimization.

These alphas are derived from our 23-feature dataset and
exemplify the Genetic Algorithm’s (GA) capacity to uncover
complex, non-linear relationships, drawing inspiration from
Darwinian principles [11], [14]–[16].

2) Portfolio Allocation Results with Best Performing Al-
phas: The portfolio allocations driven by these top alphas are
a shining example of GA’s transformative impact, achieving
consistent growth and stability over the 2019–2023 period.

Fig. 10. Cumulative PnL for Top 3 Alphas

Figure 10 illustrates how each alpha contributes to portfolio
growth over time. The leading alpha ((High - Open) / (Volume
/ High * Open) + (Volume / Open)) yields a cumulative PnL
of $28.04M from an initial $20M, representing a 140% return
with a remarkably low volatility of 0.0545. Daily allocations,
normalized across REIT tickers with shorting enabled, demon-
strate steady upward trajectories, adeptly navigating market
disruptions like the 2020 COVID-19 shock with minimal
drawdowns. The second and third alphas similarly excel,
with $20.31M and $19.98M PnLs, respectively, maintaining
volatilities below 0.052. These results, achieving Sharpe ratios
of 9.72, 7.70, and 7.60, outshine market indices and traditional
models, positioning GA as a beacon of REIT optimization.

V. CONCLUSION

This study presents a transformative approach to REIT
portfolio optimization, integrating Genetic Algorithms (GA)
and Machine Learning (ML) to achieve superior profitability
and stability. Our framework outperforms traditional models
like ARIMA and GARCH, offering new possibilities for
profitability in REIT investments.

A. Benchmarking Against Indexes, ARIMA, and GARCH

Figure 11 presents a comparative analysis of our port-
folio strategies against traditional benchmarks and econo-
metric models. The Genetic Algorithm (GA)-based model
demonstrates exceptional performance, achieving an annual-
ized return of 55.5% and a Sharpe ratio of 9.72, substantially
outperforming both market indexes and classical time-series
approaches. This result underscores the power of evolutionary
optimization when applied to complex, multi-factor investment
environments.

The GA’s strength lies in its ability to exploit non-linear
interactions within a diverse 23-feature dataset, enabling dy-
namic adaptation to changing market regimes. Its robust allo-
cation logic transforms raw predictive signals into consistent
alpha generation—positioning it as a compelling strategy
for long-term stability and growth, particularly within REIT-
focused portfolios.

Among machine learning models, Neural Networks (NN)
emerge as strong contenders, achieving a Sharpe ratio of 3.50.
These models exhibit a refined balance between predictive
precision and risk-adjusted performance, reaffirming the value
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LSTM dropping to a -32% return and -0.58 Sharpe, underscor-
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exceeding our performance targets, reflect the transformative
potential of fundamental data and our trade logic, humbly
offered as a milestone for REIT optimization, respectfully
inviting the community to explore further enhancements and
foster a conducive dialogue for growth.

B. Genetic Search Results

Our Genetic Algorithm experiments reveal a monumental
achievement, demonstrating the evolutionary brilliance of our
GA-driven alpha search in redefining REIT portfolio alloca-
tion. Conducted over the 2019–2023 testing period with a
$20M starting capital.

1) Trading Signal Generated: Through five independent
Genetic Algorithm (GA) runs—each spanning 20 iterations—a
constellation of high-performing alpha formulas emerged, each
a testament to the algorithm’s power to evolve predictive
insights from complexity. Figure 9 highlights the top three
trading signals, also known as alphas, uncovered through this
evolutionary search.

The study reveals three standout alpha formulas with excep-
tional metrics: Sharpe ratios of 9.72, 7.7, and 7.6, accompanied
by annualized returns of 55.5%, 42.3%, and 41.7%, respec-
tively. Each alpha captures distinct market dynamics: Signal 1
fuses price and volume data into a resilient predictive structure,
Signal 2 emphasizes momentum and relative price shifts, and
Signal 3 isolates patterns of intraday recovery. Among them,
Signal 1 demonstrates the highest effectiveness in maximizing
returns while controlling risk, marking it as a powerful tool
for portfolio optimization.

These alphas are derived from our 23-feature dataset and
exemplify the Genetic Algorithm’s (GA) capacity to uncover
complex, non-linear relationships, drawing inspiration from
Darwinian principles [11], [14]–[16].

2) Portfolio Allocation Results with Best Performing Al-
phas: The portfolio allocations driven by these top alphas are
a shining example of GA’s transformative impact, achieving
consistent growth and stability over the 2019–2023 period.
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Figure 10 illustrates how each alpha contributes to portfolio
growth over time. The leading alpha ((High - Open) / (Volume
/ High * Open) + (Volume / Open)) yields a cumulative PnL
of $28.04M from an initial $20M, representing a 140% return
with a remarkably low volatility of 0.0545. Daily allocations,
normalized across REIT tickers with shorting enabled, demon-
strate steady upward trajectories, adeptly navigating market
disruptions like the 2020 COVID-19 shock with minimal
drawdowns. The second and third alphas similarly excel,
with $20.31M and $19.98M PnLs, respectively, maintaining
volatilities below 0.052. These results, achieving Sharpe ratios
of 9.72, 7.70, and 7.60, outshine market indices and traditional
models, positioning GA as a beacon of REIT optimization.

V. CONCLUSION

This study presents a transformative approach to REIT
portfolio optimization, integrating Genetic Algorithms (GA)
and Machine Learning (ML) to achieve superior profitability
and stability. Our framework outperforms traditional models
like ARIMA and GARCH, offering new possibilities for
profitability in REIT investments.

A. Benchmarking Against Indexes, ARIMA, and GARCH

Figure 11 presents a comparative analysis of our port-
folio strategies against traditional benchmarks and econo-
metric models. The Genetic Algorithm (GA)-based model
demonstrates exceptional performance, achieving an annual-
ized return of 55.5% and a Sharpe ratio of 9.72, substantially
outperforming both market indexes and classical time-series
approaches. This result underscores the power of evolutionary
optimization when applied to complex, multi-factor investment
environments.

The GA’s strength lies in its ability to exploit non-linear
interactions within a diverse 23-feature dataset, enabling dy-
namic adaptation to changing market regimes. Its robust allo-
cation logic transforms raw predictive signals into consistent
alpha generation—positioning it as a compelling strategy
for long-term stability and growth, particularly within REIT-
focused portfolios.

Among machine learning models, Neural Networks (NN)
emerge as strong contenders, achieving a Sharpe ratio of 3.50.
These models exhibit a refined balance between predictive
precision and risk-adjusted performance, reaffirming the value
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(8.80% return, σ = 0.025). Shorting reduces profitability, with 
LSTM dropping to a -32% return and -0.58 Sharpe, underscor- 
ing the importance of execution sensitivity. These outcomes, 
exceeding our performance targets, reflect the transformative 
potential of fundamental data and our trade logic, humbly offered 
as a milestone for REIT optimization, respectfully inviting the 
community to explore further enhancements and foster a conducive 
dialogue for growth.

4.2 Genetic Search Results
Our Genetic Algorithm experiments reveal a monumental 
achievement, demonstrating the evolutionary brilliance of our 
GA-driven alpha search in redefining REIT portfolio allocation. 
Conducted over the 2019–2023 testing period with a $20M starting 
capital.
1) Trading Signal Generated: Through five independent Genetic 
Algorithm (GA) runs−each spanning 20 iterations−a constellation 
of high-performing alpha formulas emerged, each a testament to the 
algorithm’s power to evolve predictive insights from complexity. 
Figure 9 highlights the top three trading signals, also known as 
alphas, uncovered through this evolutionary search.

The study reveals three standout alpha formulas with excep- 
tional metrics: Sharpe ratios of 9.72, 7.7, and 7.6, accompanied 
by annualized returns of 55.5%, 42.3%, and 41.7%, respectively. 
Each alpha captures distinct market dynamics: Signal 1 fuses 
price and volume data into a resilient predictive structure, Signal 
2 emphasizes momentum and relative price shifts, and Signal 3 
isolates patterns of intraday recovery. Among them, Signal 1 
demonstrates the highest effectiveness in maximizing returns 
while controlling risk, marking it as a powerful tool for portfolio 
optimization.

These alphas are derived from our 23-feature dataset and exemplify 
the Genetic Algorithm’s (GA) capacity to uncover complex, non-
linear relationships, drawing inspiration from Darwinian principles 
[1,15,16].

2) Portfolio Allocation Results with Best Performing Alphas: 
The portfolio allocations driven by these top alphas are a shining 
example of GA’s transformative impact, achieving consistent 
growth and stability over the 2019–2023 period.
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offered as a milestone for REIT optimization, respectfully
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Our Genetic Algorithm experiments reveal a monumental
achievement, demonstrating the evolutionary brilliance of our
GA-driven alpha search in redefining REIT portfolio alloca-
tion. Conducted over the 2019–2023 testing period with a
$20M starting capital.

1) Trading Signal Generated: Through five independent
Genetic Algorithm (GA) runs—each spanning 20 iterations—a
constellation of high-performing alpha formulas emerged, each
a testament to the algorithm’s power to evolve predictive
insights from complexity. Figure 9 highlights the top three
trading signals, also known as alphas, uncovered through this
evolutionary search.

The study reveals three standout alpha formulas with excep-
tional metrics: Sharpe ratios of 9.72, 7.7, and 7.6, accompanied
by annualized returns of 55.5%, 42.3%, and 41.7%, respec-
tively. Each alpha captures distinct market dynamics: Signal 1
fuses price and volume data into a resilient predictive structure,
Signal 2 emphasizes momentum and relative price shifts, and
Signal 3 isolates patterns of intraday recovery. Among them,
Signal 1 demonstrates the highest effectiveness in maximizing
returns while controlling risk, marking it as a powerful tool
for portfolio optimization.

These alphas are derived from our 23-feature dataset and
exemplify the Genetic Algorithm’s (GA) capacity to uncover
complex, non-linear relationships, drawing inspiration from
Darwinian principles [11], [14]–[16].

2) Portfolio Allocation Results with Best Performing Al-
phas: The portfolio allocations driven by these top alphas are
a shining example of GA’s transformative impact, achieving
consistent growth and stability over the 2019–2023 period.

Fig. 10. Cumulative PnL for Top 3 Alphas

Figure 10 illustrates how each alpha contributes to portfolio
growth over time. The leading alpha ((High - Open) / (Volume
/ High * Open) + (Volume / Open)) yields a cumulative PnL
of $28.04M from an initial $20M, representing a 140% return
with a remarkably low volatility of 0.0545. Daily allocations,
normalized across REIT tickers with shorting enabled, demon-
strate steady upward trajectories, adeptly navigating market
disruptions like the 2020 COVID-19 shock with minimal
drawdowns. The second and third alphas similarly excel,
with $20.31M and $19.98M PnLs, respectively, maintaining
volatilities below 0.052. These results, achieving Sharpe ratios
of 9.72, 7.70, and 7.60, outshine market indices and traditional
models, positioning GA as a beacon of REIT optimization.

V. CONCLUSION

This study presents a transformative approach to REIT
portfolio optimization, integrating Genetic Algorithms (GA)
and Machine Learning (ML) to achieve superior profitability
and stability. Our framework outperforms traditional models
like ARIMA and GARCH, offering new possibilities for
profitability in REIT investments.

A. Benchmarking Against Indexes, ARIMA, and GARCH

Figure 11 presents a comparative analysis of our port-
folio strategies against traditional benchmarks and econo-
metric models. The Genetic Algorithm (GA)-based model
demonstrates exceptional performance, achieving an annual-
ized return of 55.5% and a Sharpe ratio of 9.72, substantially
outperforming both market indexes and classical time-series
approaches. This result underscores the power of evolutionary
optimization when applied to complex, multi-factor investment
environments.

The GA’s strength lies in its ability to exploit non-linear
interactions within a diverse 23-feature dataset, enabling dy-
namic adaptation to changing market regimes. Its robust allo-
cation logic transforms raw predictive signals into consistent
alpha generation—positioning it as a compelling strategy
for long-term stability and growth, particularly within REIT-
focused portfolios.

Among machine learning models, Neural Networks (NN)
emerge as strong contenders, achieving a Sharpe ratio of 3.50.
These models exhibit a refined balance between predictive
precision and risk-adjusted performance, reaffirming the value
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Figure 10 illustrates how each alpha contributes to portfolio 
growth over time. The leading alpha ((High - Open) / (Volume/ 
High * Open) + (Volume / Open)) yields a cumulative PnL of 
$28.04M from an initial $20M, representing a 140% return with a 
remarkably low volatility of 0.0545. Daily allocations, normalized 
across REIT tickers with shorting enabled, demonstrate steady 
upward trajectories, adeptly navigating market disruptions like the 
2020 COVID-19 shock with minimal drawdowns. The second and 
third alphas similarly excel, with $20.31M and $19.98M PnLs, 
respectively, maintaining volatilities below 0.052. These results, 
achieving Sharpe ratios of 9.72, 7.70, and 7.60, outshine market 
indices and traditional models, positioning GA as a beacon of 
REIT optimization.

5. Conclusion
This study presents a transformative approach to REIT portfolio 
optimization, integrating Genetic Algorithms (GA) and Machine 
Learning (ML) to achieve superior profitability and stability. 
Our framework outperforms traditional models like ARIMA 
and GARCH, offering new possibilities for profitability in REIT 
investments.

5.1 Benchmarking Against Indexes, ARIMA, and GARCH
Figure 11 presents a comparative analysis of our portfolio 
strategies against traditional benchmarks and econometric 
models. The Genetic Algorithm (GA)-based model demonstrates 
exceptional performance, achieving an annualized return of 55.5% 
and a Sharpe ratio of 9.72, substantially outperforming both 
market indexes and classical time-series approaches. This result 
underscores the power of evolutionary optimization when applied 
to complex, multi-factor investment environments.

The GA’s strength lies in its ability to exploit non-linear interactions 
within a diverse 23-feature dataset, enabling dynamic adaptation 
to changing market regimes. Its robust allocation logic transforms 
raw predictive signals into consistent alpha generation−positioning 
it as a compelling strategy for long-term stability and growth, 
particularly within REIT- focused portfolios.

Among machine learning models, Neural Networks (NN) emerge 
as strong contenders, achieving a Sharpe ratio of 3.50. These 
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of integrating modern AI techniques with financial domain
knowledge.

In contrast, traditional econometric models such as ARIMA
and GARCH, while historically foundational, fall short in
this context. Their limited capacity to model structural shifts,
incorporate fundamental data, or respond adaptively to non-
stationary patterns restricts their effectiveness in contemporary
portfolio management. The comparative underperformance
of these models further validates the necessity of evolution
toward more data-rich, learning-based frameworks.

LSTM models, while promising in terms of predictive accu-
racy, reveal exceptional sensitivity—highlighting an important
area for refinement in translating forecasts into trades. En-
hancing their responsiveness to signal magnitude and market
volatility could unlock significant latent potential.

Overall, both GA and NN models deliver superior results
not only in returns but also in drawdown resilience and
volatility-adjusted performance, clearly surpassing ARIMA,
GARCH, and benchmark indexes. These outcomes exemplify
the transformative potential of combining fundamental insight,
predictive modeling, and algorithmic allocation.

Looking ahead, transformer-based architectures—such as
Informer—represent the next frontier in financial time series
modeling. Their capacity to capture long-range dependencies
and context-aware dynamics makes them promising candidates
for future benchmarks and further innovation in portfolio
strategy development.

B. Comparing Characteristics of Approaches

Figure 12 illustrates the complementary strengths of our ap-
proaches—Genetic Algorithms (GA) for profitability, Machine
Learning (ML) for precision—while acknowledging areas for
improvement, like LSTM’s execution challenges.

C. Major Contribution and Creativity

We are pleased to contribute the following advancements:
1) Introducing a GA-driven alpha search framework that

enhances REIT portfolio optimization, achieving a
Sharpe ratio of 9.72, demonstrating the potential of
evolutionary algorithms in financial applications.

Fig. 12. Comparison on Profitability, Risk, Prediction Accuracy and Recall

2) Strengthening machine learning-based predictive mod-
eling by integrating MLR, NN, and LSTM with a
carefully curated dataset of 23 selected features, offering
improved forecasting insights for REIT investments.

3) Designing a structured trade execution mechanism that
effectively translates predictive signals into optimized
portfolio allocations, contributing to a more seamless
investment strategy.

4) Developing a comprehensive and automated workflow
for portfolio optimization, covering data acquisition,
feature engineering, model training, validation, and iter-
ative refinement, to foster more efficient and data-driven
decision-making (Figure 1).

These advancements represent a meaningful progression
beyond traditional models, offering valuable insights and a
foundation for future research in the field.

D. Future Work

This paper presents a reproducible, theoretically grounded,
and practically validated framework for REIT portfolio op-
timization, leveraging machine learning and evolutionary al-
gorithms. Future work will focus on extending the Genetic
Algorithm’s operator set to enhance optimization capabilities,
refining execution logic within ML models to translate pre-
dictions into effective trades better, and incorporating Deep
Reinforcement Learning (DRL) to enable real-time, adaptive
strategy formulation. In parallel, transformer-based architec-
tures will be explored for their ability to model long-range
dependencies in financial time series. These directions aim to
strengthen further the framework’s precision, adaptability, and
robustness—advancing the frontier of intelligent, data-driven
portfolio management.
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management. The comparative underperformance of these models 
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adjusted performance, clearly surpassing ARIMA, GARCH, and 
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and algorithmic allocation.
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capacity to capture long-range dependencies and context-aware 
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Learning (ML) for precision−while acknowledging areas for 
improvement, like LSTM’s execution challenges.

5.2 Major Contribution and Creativity
We are pleased to contribute the following advancements:
1) Introducing a GA-driven alpha search framework that enhances
REIT portfolio optimization, achieving a Sharpe ratio of 9.72,
demonstrating the potential of evolutionary algorithms in financial
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2). Strengthening machine learning-based predictive modeling by 
integrating MLR, NN, and LSTM with a carefully curated dataset 
of 23 selected features, offering improved forecasting insights for 
REIT investments.
3). Designing a structured trade execution mechanism that 
effectively translates predictive signals into optimized portfolio 
allocations, contributing to a more seamless investment strategy.
4). Developing a comprehensive and automated workflow for port-
folio optimization, covering data acquisition, feature engineering, 
model training, validation, and iterative refinement, to foster more 
efficient and data-driven decision-making (Figure 1).

These advancements represent a meaningful progression beyond 
traditional models, offering valuable insights and a foundation for 
future research in the field.

Future Work
This paper presents a reproducible, theoretically grounded, and 
practically validated framework for REIT portfolio optimization, 
leveraging machine learning and evolutionary algorithms. Future 
work will focus on extending the Genetic Algorithm’s operator 

set to enhance optimization capabilities, refining execution logic 
within ML models to translate predictions into effective trades 
better, and incorporating Deep Reinforcement Learning (DRL) 
to enable real-time, adaptive strategy formulation. In parallel, 
transformer-based architectures will be explored for their ability 
to model long-range dependencies in financial time series. These 
directions aim to strengthen further the framework’s precision, 
adaptability, and robustness−advancing the frontier of intelligent, 
data-driven portfolio management.
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