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Abstract
The equations of electrodynamics must, first of all, satisfy the law of conservation of energy. It is shown that Maxwell's equations 
can be obtained from the Cauchy-Riemann conditions for a quaternion in 4D space. Electrons are written as 4D vectors in energy 
space, in which the first elements represent the real part of the quaternion (scalar), and the other three represent the imaginary 
part. From the point of view of conservation of energy, an electron cannot move into an arbitrary state, but only makes quantum 
jumps to those places in space in which it stores energy. Consequently, the movement of electrons in time occurs along an orbit. 
Since scalars are formed by the interaction of electromagnetic waves, 4D electrons have a spectrum.

The mathematically obtained equations of quaternion electrodynamics have the same form for electric and magnetic intensity, but 
differ from Maxwell's equations by the presence of a scalar part. A charged electron is considered as the scalar part in the equation 
of circulation of the electric field strength. The electron spin is considered as the scalar part in the equation of magnetic intensity 
circulation. The equations of the scalar parts correspond to Gauss's law and form a single connection with the equations of the 
imaginary parts. Also, unlike Maxwell's equations, instead of currents induced by circulations of intensities, the electromotive 
forces that form these currents are shown. As is known, in the equation for the circulation of magnetic intensity, Maxwell added 
a current formed by the change in electric flux over time. In the obtained expressions, this term appeared mathematically and 
represents the electromotive force generated by the change in the magnetic field over time.
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1. Introduction
Electrodynamics is based on Maxwell's equations [1,2]. Maxwell generalized the experiments on electricity of Faraday and Ampere 
and described them in terms of vector mathematics in 1865. The discovery of the quaternion by William Rowan Hamilton occurred in 
1843. In formulating the equations of electrodynamics, Maxwell used the Hamiltonian operator in 3D space with imaginary units i, j, k. 
This operator is a pure quaternion, i.e., a quaternion without a scalar part. The absence of the scalar part resulted in a zero solution to the 
equation based on Ampere's law. Therefore, Maxwell introduced into this equation the time derivative of the electric flux.

In everyday life, physical space is perceived as three-dimensional: length, width, height. In physics, time is added to the dimension of 
space. However, physical space is universal and allows for the formation of spaces of much greater dimensions within it. This fact is 
confirmed by the evolution of Nature on Earth and in outer space in general. The more complex the structure of matter, the greater the 
dimensionality of the space in which it is formed must be.

Mathematically, these phenomena can be described using hypercomplex numbers [3]. Quaternion forms a 4D space in 3D physical space, 
octonion – 8D, sedenion – 16D, etc. The dimension of the space is doubled by the dimension of the hypercomplex number. Doubling 
of dimensionality is associated with the procedure of doubling complex numbers when obtaining hypercomplex signals. Imaginary 
numbers i, j, k, etc. form orthogonal coordinate axes of such a space. The presence of scalar and imaginary parts in hypercomplex 
numbers allows us to explain how particles emerge from waves. Electromagnetic waves become material rather than a special kind of 
matter. The interaction of waves occurs not due to the ether, but directly due to the particles formed by them and vice versa.

The purpose of the article is to present a quaternion mathematical model of charges and their interaction with electric and magnetic 
fields, on the basis of which to obtain the equations of electrodynamics.
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2. Materials and Methods for Solving the Problem
To derive the equations of electrodynamics, we use a quaternion. In algebraic form, a quaternion is written as [3,4]

where s, x, y, z are real numbers, i, j, k are imaginary units.

A quaternion function is also a quaternion, which can be written as a sum of functions

Quaternion (1) and function of quaternion (2) have dimension 4D in 4D space with real coordinate axis s and three imaginary axes i, 
j, k. To eliminate imaginary units in mathematical models of systems in multidimensional space, it is proposed to use their vector and 
matrix representation [5]. 

In vector representation, the function of quaternion (2) will look like: 			   . In matrix representation, we write quaternion 
(1) as

Let us extract the basis matrices from (3): 

Using the basis matrices (4), we represent the quaternion (1) as follows: 

For quaternion (5) the multiplication table of basis matrices (4) shown in Table 1 is valid.

Table 1: Multiplication operations of quaternion basis matrices.

As can be seen from the basis matrices (4), representation (5) and Table 1, the imaginary units and, accordingly, the axes of spatial 
coordinates, also have a dimension of 4D. The basis matrices are orthogonal and do not intersect in space, i.e., when they are superimposed 
on each other.

Let us consider the use of quaternion (3) as a differential operator for the equation of dynamics in the state space [5]:

where A  – state transition matrix (STM), and the variables x, y, z correspond to angular frequencies	     the indices of which 
show the imaginary coordinate axes of 4D space, x(t)  – time-varying quaternion in vector representation,      – time derivative of a 
vector  x(t).

Equation (6) is a matrix differential equation in time and state space. Multiplying the input vector by the STM produces an output vector 
in the form of a time derivative of the input vector. For constant values of angular frequencies                        the STM has the simplest form:
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In more complex cases, it is possible to consider various combinations of STM degrees. 
nA , as well as other linear functional transformations. 

The derivative of a quaternion function with respect to a quaternion is calculated as 
( )df q p u v w p u v wi

dq s x y z x s z y
 (8) 
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In matrix representation, we write the derivative (8) of function (2) using abbreviated 
notations of partial derivatives as 
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The derivative with respect to the conjugate quaternion (9) in matrix representation has the 
form: 
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As can be seen from (10) and (11), the matrix of the derivative with respect to the conjugate 
quaternion is equal to the transposed matrix of the derivative with respect to the quaternion. 

In vector analysis, the complex Hamiltonian operator is often used: 

i j k
x y z
  

 = + +
  

. (12) 

Let us write the operator (12) using the basis matrices (4) in the form: 
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representation [5]. In vector representation, the function of quaternion (2) will look like:

 T( )f q p u v w= . In matrix representation, we write quaternion (1) as 
s x y z
x s z y
y z s x
z y x s

 
 − − =
 − −
 − − 

Q . (3) 

Let us extract the basis matrices from (3): 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 
 
 =
 
 
 

E , 

0 1 0 0
1 0 0 0

0 0 0 1
0 0 1 0

 
 − =
 −
 
 

I , 

0 0 1 0
0 0 0 1
1 0 0 0

0 1 0 0

 
 
 =
 −
 − 

J , 

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 
 − =
 
 − 

K . (4) 

Using the basis matrices (4), we represent the quaternion (1) as follows: 
s x y zQ E I J K . (5) 

For quaternion (5) the multiplication table of basis matrices (4) shown in Table 1 is valid. 
Table 1. Multiplication operations of quaternion basis matrices. 


− −
− −

− −

E I J K
E E I J K
I I E K J
J J K E I
K K J I E

. 

As can be seen from the basis matrices (4), representation (5) and Table 1, the imaginary 
units and, accordingly, the axes of spatial coordinates, also have a dimension of 4D. The basis 
matrices are orthogonal and do not intersect in space, i.e., when they are superimposed on each 
other. 

Let us consider the use of quaternion (3) as a differential operator for the equation of 
dynamics in the state space [5]: 

( ) ( )t t=x Ax , (6) 

2 
 

kind of matter. The interaction of waves occurs not due to the ether, but directly due to the particles 
formed by them and vice versa. 

The purpose of the article is to present a quaternion mathematical model of charges and 
their interaction with electric and magnetic fields, on the basis of which to obtain the equations of 
electrodynamics. 

II. MATERIALS AND METHODS FOR SOLVING THE PROBLEM 
To derive the equations of electrodynamics, we use a quaternion. In algebraic form, a 

quaternion is written as [3, 4] 
q s ix jy kz= + + + ,  (1) 

where s, x, y, z are real numbers, i, j, k are imaginary units. 
A quaternion function is also a quaternion, which can be written as a sum of functions 
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where A  – state transition matrix (STM), and the variables x, y, z correspond to angular 
frequencies , ,i j k   , the indices of which show the imaginary coordinate axes of 4D space, ( )tx  
– time-varying quaternion in vector representation, ( )tx  – time derivative of a vector ( )tx . 

Equation (6) is a matrix differential equation in time and state space. Multiplying the input 
vector by the STM produces an output vector in the form of a time derivative of the input vector. 
For constant values of angular frequencies , ,i j k   , the STM has the simplest form: 

0
0

0
0

i j k

i k j
i j k

j k i

k j i

  
  

  
  
  

 
 − − = + + =
 − −
 − −  

A I J K . (7) 

In more complex cases, it is possible to consider various combinations of STM degrees. 
nA , as well as other linear functional transformations. 

The derivative of a quaternion function with respect to a quaternion is calculated as 
( )df q p u v w p u v wi

dq s x y z x s z y
 (8) 

p u v w p u v wj k
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For constant values of angular frequencies , ,i j k   , the STM has the simplest form: 

0
0

0
0

i j k

i k j
i j k

j k i

k j i

  
  

  
  
  

 
 − − = + + =
 − −
 − −  

A I J K . (7) 

In more complex cases, it is possible to consider various combinations of STM degrees. 
nA , as well as other linear functional transformations. 

The derivative of a quaternion function with respect to a quaternion is calculated as 
( )df q p u v w p u v wi

dq s x y z x s z y
 (8) 

p u v w p u v wj k
y z s x z y x s

. 

The derivative of a quaternion function with respect to its conjugate quaternion will have 
the form: 

( )df q p u v w p u v wi
dq s x y z x s z y

 (9) 

p u v w p u v wj k
y z s x z y x s

. 

In matrix representation, we write the derivative (8) of function (2) using abbreviated 
notations of partial derivatives as 

( )
s x y z

x s z y

y z s x

z y x s

p p
u udf q
v vdq s x y z
w w

       
    −  −          = + + + =   −   −            − −       

E I J K . (10) 

The derivative with respect to the conjugate quaternion (9) in matrix representation has the 
form: 

( )
s x y z

x s z y

y z s x

z y x s

p p
u udf q
v vdq s x y z
w w

 − − −    
       −         = − − − =    −                −      

E I J K . (11) 

As can be seen from (10) and (11), the matrix of the derivative with respect to the conjugate 
quaternion is equal to the transposed matrix of the derivative with respect to the quaternion. 

In vector analysis, the complex Hamiltonian operator is often used: 

i j k
x y z
  

 = + +
  

. (12) 

Let us write the operator (12) using the basis matrices (4) in the form: 
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   
 − −       = + + =   −  −     − −   

I J K . (13) 

If function (2) is harmonic with component cos t  and sin t , then when calculating the 
time derivatives of complex functions using (13), angular frequencies i , j , k  appear in the 
form of multipliers of the STM elements (7) of the dynamic’s equation (6). Note that the angular 
frequencies are constant and the change in rotation angles occurs in accordance with the change 
in time.  

The solution to the homogeneous linear matrix differential equation (6) will be the 
exponential of STM (7). The fundamental matrix of a three-frequency quaternion has the form [5]: 

( )( , , , ) e e i j k tt
i j k t      + += = =I J KAΦ  (14) 

( , , , ) ( , , , ) ( , , , ) ( , , , )i j k i j k i j k i j ks t x t y t z t           = + + +E I J K , 
where ( , , , ) cos cos cos sin sin sini j k i j k i j ks t t t t t t t        = − , (15) 

( , , , ) sin cos cos cos sin sini j k i j k i j kx t t t t t t t        = + , 
( , , , ) cos sin cos sin cos sini j k i j k i j ky t t t t t t t        = − , 
( , , , ) cos cos sin sin sin cosi j k i j k i j kz t t t t t t t        = + . 

The fundamental matrix (14), taking into account (15), also represents a quaternion in 
matrix notation.  

It is known that the fundamental matrix for three reference frequencies i , j , k  is 
decomposed into 4 single-frequency matrices [5]: 

( , , , )i j k t   =Φ  

1 2 3 4 1 1 2 2 3 3 4 4( , , , , ) ( , ) ( , ) ( , ) ( , )t t t t t=     =  +  +  + Φ Φ Φ Φ Φ , (16) 

where ( ) ( )( ) ( ) ( )( )1 1 1 1 1 1
1( , ) cos sin cos sin
4

t t t t t =  +  + −  +  +Φ E I  (17) 

          ( ) ( )( ) ( ) ( )( )1 1 1 1cos sin cos sint t t t+  +  + −  + J K , 

( ) ( )( ) ( ) ( )( )2 2 2 2 2 2
1( , ) cos sin cos sin
4

t t t t t =  −  +  +  +Φ E I  

          ( ) ( )( ) ( ) ( )( )2 2 2 2cos sin cos sint t t t + −  +  + −  −  J K , 

( ) ( )( ) ( ) ( )( )3 3 3 3 3 3
1( , ) cos sin cos sin
4

t t t t t =  −  +  +  +Φ E I  

             ( ) ( )( ) ( ) ( )( )3 3 3 3cos sin cos sint t t t +  −  +  +  J K , 

( ) ( )( ) ( ) ( )( )4 4 4 4 4 4
1( , ) cos sin cos sin
4

t t t t t =  +  + −  +  +Φ E I  

             ( ) ( )( ) ( ) ( )( )4 4 4 4cos sin cos sint t t t + −  −  +  −  J K , 

1 i j k   = + + , 1 i j k   = + + , 2 i j k   = + − ,  (18) 

3 i j k   = − + , 4 i j k   = − −  - combination frequencies. 
Thus, the quaternion space has a dimension of 4D. In this case, three coordinates are 

imaginary and one is real. For harmonic functions sine and cosine with different angular 
frequencies, each imaginary coordinate has its own angular frequency and a connection between 
time (rotation frequency) and space is formed. The STM for a dynamic state-space model is a 
differential operator and corresponds to the Hamiltonian operator. For harmonic functions, spatial 
differentiation corresponds to multiplying the elements of the quaternion by the angular 
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I J K . (13) 

If function (2) is harmonic with component cos t  and sin t , then when calculating the 
time derivatives of complex functions using (13), angular frequencies i , j , k  appear in the 
form of multipliers of the STM elements (7) of the dynamic’s equation (6). Note that the angular 
frequencies are constant and the change in rotation angles occurs in accordance with the change 
in time.  

The solution to the homogeneous linear matrix differential equation (6) will be the 
exponential of STM (7). The fundamental matrix of a three-frequency quaternion has the form [5]: 

( )( , , , ) e e i j k tt
i j k t      + += = =I J KAΦ  (14) 

( , , , ) ( , , , ) ( , , , ) ( , , , )i j k i j k i j k i j ks t x t y t z t           = + + +E I J K , 
where ( , , , ) cos cos cos sin sin sini j k i j k i j ks t t t t t t t        = − , (15) 

( , , , ) sin cos cos cos sin sini j k i j k i j kx t t t t t t t        = + , 
( , , , ) cos sin cos sin cos sini j k i j k i j ky t t t t t t t        = − , 
( , , , ) cos cos sin sin sin cosi j k i j k i j kz t t t t t t t        = + . 

The fundamental matrix (14), taking into account (15), also represents a quaternion in 
matrix notation.  

It is known that the fundamental matrix for three reference frequencies i , j , k  is 
decomposed into 4 single-frequency matrices [5]: 

( , , , )i j k t   =Φ  

1 2 3 4 1 1 2 2 3 3 4 4( , , , , ) ( , ) ( , ) ( , ) ( , )t t t t t=     =  +  +  + Φ Φ Φ Φ Φ , (16) 

where ( ) ( )( ) ( ) ( )( )1 1 1 1 1 1
1( , ) cos sin cos sin
4

t t t t t =  +  + −  +  +Φ E I  (17) 

          ( ) ( )( ) ( ) ( )( )1 1 1 1cos sin cos sint t t t+  +  + −  + J K , 

( ) ( )( ) ( ) ( )( )2 2 2 2 2 2
1( , ) cos sin cos sin
4

t t t t t =  −  +  +  +Φ E I  

          ( ) ( )( ) ( ) ( )( )2 2 2 2cos sin cos sint t t t + −  +  + −  −  J K , 

( ) ( )( ) ( ) ( )( )3 3 3 3 3 3
1( , ) cos sin cos sin
4

t t t t t =  −  +  +  +Φ E I  

             ( ) ( )( ) ( ) ( )( )3 3 3 3cos sin cos sint t t t +  −  +  +  J K , 

( ) ( )( ) ( ) ( )( )4 4 4 4 4 4
1( , ) cos sin cos sin
4

t t t t t =  +  + −  +  +Φ E I  

             ( ) ( )( ) ( ) ( )( )4 4 4 4cos sin cos sint t t t + −  −  +  −  J K , 

1 i j k   = + + , 1 i j k   = + + , 2 i j k   = + − ,  (18) 

3 i j k   = − + , 4 i j k   = − −  - combination frequencies. 
Thus, the quaternion space has a dimension of 4D. In this case, three coordinates are 

imaginary and one is real. For harmonic functions sine and cosine with different angular 
frequencies, each imaginary coordinate has its own angular frequency and a connection between 
time (rotation frequency) and space is formed. The STM for a dynamic state-space model is a 
differential operator and corresponds to the Hamiltonian operator. For harmonic functions, spatial 
differentiation corresponds to multiplying the elements of the quaternion by the angular 
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If function (2) is harmonic with component    		  then when calculating the time derivatives of complex functions using 
(13), angular frequencies  		    appear in the form of multipliers of the STM elements (7) of the dynamic’s equation (6). Note that 
the angular frequencies are constant and the change in rotation angles occurs in accordance with the change in time. 

The solution to the homogeneous linear matrix differential equation (6) will be the exponential of STM (7). The fundamental matrix of 
a three-frequency quaternion has the form [5]:

The fundamental matrix (14), taking into account (15), also represents a quaternion in matrix notation. 

It is known that the fundamental matrix for three reference frequencies  	     is decomposed into 4 single-frequency matrices [5]:

Thus, the quaternion space has a dimension of 4D. In this case, three coordinates are imaginary and one is real. For harmonic functions 
sine and cosine with different angular frequencies, each imaginary coordinate has its own angular frequency and a connection between 
time (rotation frequency) and space is formed. The STM for a dynamic state-space model is a differential operator and corresponds to the 
Hamiltonian operator. For harmonic functions, spatial differentiation corresponds to multiplying the elements of the quaternion by the 
angular frequencies of the corresponding spatial coordinate axes. The three-frequency fundamental matrix is a solution to the differential 
equation of dynamics in the state space. The three-frequency fundamental matrix for three reference frequencies is orthogonal and is 
decomposed into the sum (16) single-frequency orthogonal matrices (17) of combination frequencies (18).

3. Technique of Obtaining Maxwell’s Quaternion Equations
3.1 Quaternion Electrostatic Equations
In electrostatics, charge q is considered in 3D space and charges of various bodies are calculated using geometric transformations [1]. In 
this case, the three coordinates of 3D space represent the geometric coordinates of bodies. This representation does not take into account 
the dimensionality of the charge in the energy space and, accordingly, the connection between the coordinates of the charge with its 
energy coordinates and the spatial electromagnetic fields that form the charge.

Let us represent the charge q as a quaternion and consider it in 4D energy space as a vector q. Each axis of space will have a charge value 
and will be denoted by real numbers s, x, y, z, as in the algebraic representation of a quaternion (1). Since it is impossible to represent 4 
axes on a plane, we will represent the scalar s as a sphere with coordinates for its imaginary axes. The radius of the sphere will determine 
the magnitude of the scalar [5]. To transform one 4D quaternion vector into another, a 4D matrix must be used. To satisfy the law of 
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   
 − −       = + + =   −  −     − −   

I J K . (13) 

If function (2) is harmonic with component cos t  and sin t , then when calculating the 
time derivatives of complex functions using (13), angular frequencies i , j , k  appear in the 
form of multipliers of the STM elements (7) of the dynamic’s equation (6). Note that the angular 
frequencies are constant and the change in rotation angles occurs in accordance with the change 
in time.  

The solution to the homogeneous linear matrix differential equation (6) will be the 
exponential of STM (7). The fundamental matrix of a three-frequency quaternion has the form [5]: 

( )( , , , ) e e i j k tt
i j k t      + += = =I J KAΦ  (14) 

( , , , ) ( , , , ) ( , , , ) ( , , , )i j k i j k i j k i j ks t x t y t z t           = + + +E I J K , 
where ( , , , ) cos cos cos sin sin sini j k i j k i j ks t t t t t t t        = − , (15) 

( , , , ) sin cos cos cos sin sini j k i j k i j kx t t t t t t t        = + , 
( , , , ) cos sin cos sin cos sini j k i j k i j ky t t t t t t t        = − , 
( , , , ) cos cos sin sin sin cosi j k i j k i j kz t t t t t t t        = + . 

The fundamental matrix (14), taking into account (15), also represents a quaternion in 
matrix notation.  

It is known that the fundamental matrix for three reference frequencies i , j , k  is 
decomposed into 4 single-frequency matrices [5]: 

( , , , )i j k t   =Φ  

1 2 3 4 1 1 2 2 3 3 4 4( , , , , ) ( , ) ( , ) ( , ) ( , )t t t t t=     =  +  +  + Φ Φ Φ Φ Φ , (16) 

where ( ) ( )( ) ( ) ( )( )1 1 1 1 1 1
1( , ) cos sin cos sin
4

t t t t t =  +  + −  +  +Φ E I  (17) 

          ( ) ( )( ) ( ) ( )( )1 1 1 1cos sin cos sint t t t+  +  + −  + J K , 

( ) ( )( ) ( ) ( )( )2 2 2 2 2 2
1( , ) cos sin cos sin
4

t t t t t =  −  +  +  +Φ E I  

          ( ) ( )( ) ( ) ( )( )2 2 2 2cos sin cos sint t t t + −  +  + −  −  J K , 

( ) ( )( ) ( ) ( )( )3 3 3 3 3 3
1( , ) cos sin cos sin
4

t t t t t =  −  +  +  +Φ E I  

             ( ) ( )( ) ( ) ( )( )3 3 3 3cos sin cos sint t t t +  −  +  +  J K , 

( ) ( )( ) ( ) ( )( )4 4 4 4 4 4
1( , ) cos sin cos sin
4

t t t t t =  +  + −  +  +Φ E I  

             ( ) ( )( ) ( ) ( )( )4 4 4 4cos sin cos sint t t t + −  −  +  −  J K , 

1 i j k   = + + , 1 i j k   = + + , 2 i j k   = + − ,  (18) 

3 i j k   = − + , 4 i j k   = − −  - combination frequencies. 
Thus, the quaternion space has a dimension of 4D. In this case, three coordinates are 

imaginary and one is real. For harmonic functions sine and cosine with different angular 
frequencies, each imaginary coordinate has its own angular frequency and a connection between 
time (rotation frequency) and space is formed. The STM for a dynamic state-space model is a 
differential operator and corresponds to the Hamiltonian operator. For harmonic functions, spatial 
differentiation corresponds to multiplying the elements of the quaternion by the angular 
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If function (2) is harmonic with component cos t  and sin t , then when calculating the 
time derivatives of complex functions using (13), angular frequencies i , j , k  appear in the 
form of multipliers of the STM elements (7) of the dynamic’s equation (6). Note that the angular 
frequencies are constant and the change in rotation angles occurs in accordance with the change 
in time.  

The solution to the homogeneous linear matrix differential equation (6) will be the 
exponential of STM (7). The fundamental matrix of a three-frequency quaternion has the form [5]: 

( )( , , , ) e e i j k tt
i j k t      + += = =I J KAΦ  (14) 

( , , , ) ( , , , ) ( , , , ) ( , , , )i j k i j k i j k i j ks t x t y t z t           = + + +E I J K , 
where ( , , , ) cos cos cos sin sin sini j k i j k i j ks t t t t t t t        = − , (15) 

( , , , ) sin cos cos cos sin sini j k i j k i j kx t t t t t t t        = + , 
( , , , ) cos sin cos sin cos sini j k i j k i j ky t t t t t t t        = − , 
( , , , ) cos cos sin sin sin cosi j k i j k i j kz t t t t t t t        = + . 

The fundamental matrix (14), taking into account (15), also represents a quaternion in 
matrix notation.  

It is known that the fundamental matrix for three reference frequencies i , j , k  is 
decomposed into 4 single-frequency matrices [5]: 

( , , , )i j k t   =Φ  

1 2 3 4 1 1 2 2 3 3 4 4( , , , , ) ( , ) ( , ) ( , ) ( , )t t t t t=     =  +  +  + Φ Φ Φ Φ Φ , (16) 

where ( ) ( )( ) ( ) ( )( )1 1 1 1 1 1
1( , ) cos sin cos sin
4

t t t t t =  +  + −  +  +Φ E I  (17) 

          ( ) ( )( ) ( ) ( )( )1 1 1 1cos sin cos sint t t t+  +  + −  + J K , 
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4

t t t t t =  +  + −  +  +Φ E I  

             ( ) ( )( ) ( ) ( )( )4 4 4 4cos sin cos sint t t t + −  −  +  −  J K , 

1 i j k   = + + , 1 i j k   = + + , 2 i j k   = + − ,  (18) 

3 i j k   = − + , 4 i j k   = − −  - combination frequencies. 
Thus, the quaternion space has a dimension of 4D. In this case, three coordinates are 

imaginary and one is real. For harmonic functions sine and cosine with different angular 
frequencies, each imaginary coordinate has its own angular frequency and a connection between 
time (rotation frequency) and space is formed. The STM for a dynamic state-space model is a 
differential operator and corresponds to the Hamiltonian operator. For harmonic functions, spatial 
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3 i j k   = − + , 4 i j k   = − −  - combination frequencies. 
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imaginary and one is real. For harmonic functions sine and cosine with different angular 
frequencies, each imaginary coordinate has its own angular frequency and a connection between 
time (rotation frequency) and space is formed. The STM for a dynamic state-space model is a 
differential operator and corresponds to the Hamiltonian operator. For harmonic functions, spatial 
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conservation of energy, in our case, charge, the matrix must be orthogonal.

Let us consider the imaginary unit of a single-frequency quaternion as the transformation matrix:

Figure 1 shows two charged particles of different sign and magnitude. Red indicates a positive charge, and blue indicates a negative 
charge. A positively charged particle is represented by a vector  		   with the value of the scalar part of the charge s=5 and 
with the values of the imaginary charge coordinates in the matrix representation x=−2, y=−3, z=2. We use this vector as the initial state of 
the dynamic system (6). The ratio of the scalar part to the imaginary parts in the initial state can be anything. This ratio defines the norm 
of the charge vector. When multiplying   by matrix (19), we obtain a charge 			    in which the ratio of the scalar part 
to the imaginary parts is determined by the constancy of the norm of the resulting vectors. As can be seen, the norm of the vector q1  is 
equal to the norm of the vector     . Consequently, the charge q1 cannot move to any place in the charge space, but only to the one in which 
it maintains its norm. This transition can be called a quantum jump of a 4D electron. Similar transformations are shown in Figure 2 for 
the charge vector 

As is known, multiplication by an imaginary unit corresponds to a vector rotation. In our case, the rotation by matrix (19) can be divided 
into three rotations in 4D space, carried out by the basis matrices I, J, K.
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Figure 1 shows two charged particles of different sign and magnitude. Red indicates a 
positive charge, and blue indicates a negative charge. A positively charged particle is represented 
by a vector  T1 5 2 3 2= − −q  with the value of the scalar part of the charge s=5 and with the 
values of the imaginary charge coordinates in the matrix representation x=−2, y=−3, z=2. We use 
this vector as the initial state of the dynamic system (6). The ratio of the scalar part to the imaginary 
parts in the initial state can be anything. This ratio defines the norm of the charge vector. When 
multiplying 1q  by matrix (19), we obtain a charge  T1

ˆ 1.7 0 5.2 3.5= − − −Iq  in which the 
ratio of the scalar part to the imaginary parts is determined by the constancy of the norm of the 
resulting vectors. As can be seen, the norm of the vector 1q  is equal to the norm of the vector 1Îq
. Consequently, the charge 1q  cannot move to any place in the charge space, but only to the one 
in which it maintains its norm. This transition can be called a quantum jump of a 4D electron. 
Similar transformations are shown in Figure 2 for the charge vector  T2 3 2 1 3= − −q .  

As is known, multiplication by an imaginary unit corresponds to a vector rotation. In our 
case, the rotation by matrix (19) can be divided into three rotations in 4D space, carried out by the 
basis matrices I, J, K. 
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. Consequently, the charge 1q  cannot move to any place in the charge space, but only to the one 
in which it maintains its norm. This transition can be called a quantum jump of a 4D electron. 
Similar transformations are shown in Figure 2 for the charge vector  T2 3 2 1 3= − −q .  

As is known, multiplication by an imaginary unit corresponds to a vector rotation. In our 
case, the rotation by matrix (19) can be divided into three rotations in 4D space, carried out by the 
basis matrices I, J, K. 

 

[ ]T1 5 2 3 2= − −q

[ ]T1
ˆ 1.7 0 5.2 3.5= − − −Iq

[ ]T1
ˆ 1.7 0 5.2 3.5= − − −Iq

5 
 

frequencies of the corresponding spatial coordinate axes. The three-frequency fundamental matrix 
is a solution to the differential equation of dynamics in the state space. The three-frequency 
fundamental matrix for three reference frequencies is orthogonal and is decomposed into the sum 
(16) single-frequency orthogonal matrices (17) of combination frequencies (18). 

 

III. TECHNIQUE OF OBTAINING MAXWELL’S QUATERNION EQUATIONS 

3.1 Quaternion electrostatic equations 

In electrostatics, charge q is considered in 3D space and charges of various bodies are 
calculated using geometric transformations [1]. In this case, the three coordinates of 3D space 
represent the geometric coordinates of bodies. This representation does not take into account the 
dimensionality of the charge in the energy space and, accordingly, the connection between the 
coordinates of the charge with its energy coordinates and the spatial electromagnetic fields that 
form the charge. 

Let us represent the charge q as a quaternion and consider it in 4D energy space as a vector 
q. Each axis of space will have a charge value and will be denoted by real numbers s, x, y, z, as in 
the algebraic representation of a quaternion (1). Since it is impossible to represent 4 axes on a 
plane, we will represent the scalar s as a sphere with coordinates for its imaginary axes. The radius 
of the sphere will determine the magnitude of the scalar [5]. To transform one 4D quaternion vector 
into another, a 4D matrix must be used. To satisfy the law of conservation of energy, in our case, 
charge, the matrix must be orthogonal. 

Let us consider the imaginary unit of a single-frequency quaternion as the transformation 
matrix: 

( )

0 1 1 1
1 0 1 11 1ˆ
1 1 0 13 3
1 1 1 0

 
 − − = + + =
 − −
 − − 

I I J K . (19) 

Figure 1 shows two charged particles of different sign and magnitude. Red indicates a 
positive charge, and blue indicates a negative charge. A positively charged particle is represented 
by a vector  T1 5 2 3 2= − −q  with the value of the scalar part of the charge s=5 and with the 
values of the imaginary charge coordinates in the matrix representation x=−2, y=−3, z=2. We use 
this vector as the initial state of the dynamic system (6). The ratio of the scalar part to the imaginary 
parts in the initial state can be anything. This ratio defines the norm of the charge vector. When 
multiplying 1q  by matrix (19), we obtain a charge  T1

ˆ 1.7 0 5.2 3.5= − − −Iq  in which the 
ratio of the scalar part to the imaginary parts is determined by the constancy of the norm of the 
resulting vectors. As can be seen, the norm of the vector 1q  is equal to the norm of the vector 1Îq
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Based on the dynamic’s equation (6), an electron can make many such jumps with different 

intervals depending on the change in time and the values of angular frequencies. Since the jumps 
occur without changing the energy, the movement occurs along an orbit with a constant radius, the 
length of which is determined by the energy (norm) of the initial vector. 

Figure 3 shows the orbit of a single-frequency quaternion for the initial state 
 T1 5 2 3 2= − −q  corresponding to Figure 1. The initial state is depicted as a sphere with 

black surface lines. Figure 4 shows the orbit for the initial state  T2 3 2 1 3= − −q  shown in 
Figure 2. 

 

  
Figure 3. Rotation of a quaternion 1q  along an 

orbit 
Figure 4. Rotation of a quaternion 2q  along an orbit 

 
If rotation occurs without loss of energy, then it can last infinitely long. To move to another 

orbit with a different radius, it is necessary to obtain or spend energy. Note that the orbit is formed 
without using the fact of attraction of some bodies to others (gravity). When using a three-
frequency quaternion (14), the rotation orbits will be more complex than with a single-frequency 
one. Figures 5 and 6 show examples of rotation orbits of the electrons discussed above [5]. 

 

 

 

Figure 1. The norm of vectors 1 6.48=q , resulting 
vector [-1.7 0 -5.2 -3.5] 

Figure 2. The norm of vectors 2 4.8=q , resulting 
vector [2.3 4 1.2 0] 
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Figure 1: The Resulting Vector [-1.7 0 -5.2 -3.5]

Figure 2: The Resulting Vector [2.3 4 1.2 0]

Based on the dynamic’s equation (6), an electron can make many such jumps with different intervals depending on the change in time 
and the values of angular frequencies. Since the jumps occur without changing the energy, the movement occurs along an orbit with a 
constant radius, the length of which is determined by the energy (norm) of the initial vector.

Figure 3 shows the orbit of a single-frequency quaternion for the initial state  		        corresponding to Figure 1. The initial state 
is depicted as a sphere with black surface lines. Figure 4 shows the orbit for the initial state 		   shown in Figure 2.
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Figure 5: Rotation of a Three-Frequency Quaternion q1 Along an Orbit

Figure 6: Rotation of a Three-Frequency Quaternion q2 Along an Orbit

If rotation occurs without loss of energy, then it can last infinitely long. To move to another orbit with a different radius, it is necessary to 
obtain or spend energy. Note that the orbit is formed without using the fact of attraction of some bodies to others (gravity). When using 
a three-frequency quaternion (14), the rotation orbits will be more complex than with a single-frequency one. Figures 5 and 6 show 
examples of rotation orbits of the electrons discussed above [5]. 7 
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According to Gauss's law, knowing the electric field strength E or electric flux D, the 

electron charge density q  at a given location in 3D space can be found as an integral over a closed 
elementary surface dS with differential volume dv [1, 2]: 

vol

DD DD d d dyx z
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S v v
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 
  

= = + + =    
  . 

In other words, the real part of the quaternion (the charge scalar) is determined by the 
imaginary parts of the quaternion (the electric field strengths). 

Using the concept of divergence, we write the expression for the charge density as 

divD yx zDD D
x y z

 
= + +

  
, divD q=   (20) 

If we represent the electric flux as a function of the quaternion (2) and apply the conjugate 
Hamiltonian operator (12) to the expression for the quaternion function, then the divergence (20) 
can be represented as their scalar product: 

( )f ( ) f ( ) D x y zq q u v w = − = − = −  + + , (21) 

where  Tf ( )q u v w=  – a function of a quaternion, represented as a vector of a pure 
quaternion, which is a mathematical model of the electrical field strength E or the electrical flux 
D in 3D space. 

It is known that 0D E=  , where 0  is the permittivity of free space (electric constant) [1]. 
As can be seen from (21) and in accordance with Gauss's law, the charge is determined by the 
vectors of electrical intensity. When representing the electric field as quaternions, the strength E 
and the electric flux D are three-dimensional vectors in 3D and represent the imaginary part of the 
quaternion. This indicates that the charge or charge density of electrons in this representation is 
formed by electromagnetic waves and has a corresponding spectrum. According to the 
terminology of classical electrodynamics, such charges form “eddy” currents. However, charges 
can be formed by summing charges, in the form of scalars, and form "electric currents". 
Consequently, charge, as a scalar quantity, together with vector values of electrical intensity, exists 
not in 3D, but at least in 4D space. 

Conservation of charge energy during transformations is equivalent to conservation of the 
quaternion norm and is ensured by the Cauchy-Riemann conditions (CRC), which must be 
satisfied by hypercomplex numbers. CRC regulate the increments of the amplitudes of real and 
imaginary numbers so that the norm of the vectors of these numbers, i.e., the radius when they 
move, is preserved. CRC are obtained by making the derivative of a quaternion function with 
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It should be noted that the considered idea is consistent with M. Planck’s hypothesis about quantum radiation and absorption of energy 
of elementary particles and its dependence on frequency.
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The presence of a real part and three imaginary parts in a 4D electron shows that electrons are formed both by scalars and by magnetic 
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functions in the exponential mapping of hypercomplex space (14). In other words, the electron vector in energy space has a spectrum.
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respect to its conjugate quaternion (11) equal to zero. Physically, this means that there is no 
dissipation of energy in the direction perpendicular to the direction of motion. For expression (11) 
to be equal to zero, each term of the sum of expressions on orthogonal coordinates must be equal 
to zero. From here we obtain the CRC for the increment of the scalar part depending on the 
increments of the imaginary parts along different coordinate axes: 
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The presence of a real part and three imaginary parts in a 4D electron shows that electrons 
are formed both by scalars and by magnetic and electric fields. The electron and its charge are 
associated with wave processes that manifest themselves in the form of harmonic functions in the 
exponential mapping of hypercomplex space (14). In other words, the electron vector in energy 
space has a spectrum. 

Figures 7–10 show the spectra of a three-frequency quaternion in the form of rectangular 
pulses of a 4D charge  T1 5 2 3 2= − −q , with the rectangular pulses shifted by half the 
duration to the right so that the beginning of the pulses coincides with zero [6]. The spectrum of 
the 1st vector element is shown in red, the 2nd in blue, the 3rd in green, and the 4th in brown. The 
turquoise color shows the modulus of the vector of spectra of rectangular pulses symmetrical to 0. 
As can be seen from the graphs, the spectra of pulses shifted in time by half the pulse duration 
differ from the sin(x)/x function for the spectra of pulses symmetrical to 0. 

The spectra in Figures 7-10 show how the magnitude of the scalar part of the electron (red 
lines) and the magnitude of the imaginary parts (blue, green and brown lines) change depending 
on the change in combination frequencies (18): 1 , 2 , 3  4 . Note that Parseval's equality 
holds for quaternion spectra. 
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associated with wave processes that manifest themselves in the form of harmonic functions in the 
exponential mapping of hypercomplex space (14). In other words, the electron vector in energy 
space has a spectrum. 

Figures 7–10 show the spectra of a three-frequency quaternion in the form of rectangular 
pulses of a 4D charge  T1 5 2 3 2= − −q , with the rectangular pulses shifted by half the 
duration to the right so that the beginning of the pulses coincides with zero [6]. The spectrum of 
the 1st vector element is shown in red, the 2nd in blue, the 3rd in green, and the 4th in brown. The 
turquoise color shows the modulus of the vector of spectra of rectangular pulses symmetrical to 0. 
As can be seen from the graphs, the spectra of pulses shifted in time by half the pulse duration 
differ from the sin(x)/x function for the spectra of pulses symmetrical to 0. 

The spectra in Figures 7-10 show how the magnitude of the scalar part of the electron (red 
lines) and the magnitude of the imaginary parts (blue, green and brown lines) change depending 
on the change in combination frequencies (18): 1 , 2 , 3  4 . Note that Parseval's equality 
holds for quaternion spectra. 
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Thus, an electric charge, when using a quaternion-based hypercomplex model, is 

represented by a 4D vector in the quaternion energy space, in which the first element is a scalar 
and the other three are vectors on imaginary spatial coordinates i, j, k or in matrix representation 
on I, J, K. Gauss's law defines charge density through the divergence of electric flux and shows 
how electric fields form a charge in the form of a scalar. 

The time evolution of the charge vector values is represented by a dynamic model in state 
space, where the STM corresponds to the complex Hamiltonian operator. It is shown that an 
electron can perform quantum jumps with conservation of energy or rotate infinitely in an orbit 
with a constant radius in 4D. When using a three-frequency quaternion, the rotation orbit becomes 
more complex. Using the Cauchy-Riemann conditions, the linearity of the model allows us to 
obtain conditions that correspond to the law of conservation of energy and the principle of 
superposition. 

The solution to the state-space dynamics equation, which is a linear homogeneous 
differential equation with constant coefficients, will be an exponential raised to the STM power. 
Since the charge model is based on a hypercomplex signal, then according to Euler's formula, 
hypercomplex numbers are represented in the form of harmonic functions sine and cosine with 
angular frequencies changing over time in a coordinate system with one real axis corresponding 
to the magnitude of the charge and with three imaginary (spatial) axes corresponding to the electric 
flow. 

It is shown that using the quaternion Fourier transform it is possible to establish a 
connection between the magnitude of the charge elements and the value of the amplitudes and 
phases of the harmonics that form them, i.e., to find the frequency spectra of the charge vector 
elements. According to Parseval's equality for the quaternion Fourier transform, the charge value 
of the 4D electron vector is equal to the energy value of the harmonic functions of their generators. 

 

3.2. Quaternion Magnetostatic Equations 

Faraday introduced the concept of magnetic flux and used lines in space to visualize the 
magnetic field. He called these lines flux lines or lines of force, which show the direction of 
magnetic field strength at each point in space. In an electric field, it is clear that the electric flow 
is formed by particles that have charges and are called electrons. By analogy, we can say that the 
magnetic flux consists of particles, which we will call rotors. 

As is known, the electron has spin, which is a form of angular momentum and is its 
fundamental property, like charge. Therefore, the electron acts as a charge in electrical interaction 
and as a rotor in magnetic interaction. The circulating current (rotor) creates a magnetic field. Each 
rotor produces magnetic intensity. Just like the charge, the angular velocity of the rotor ω can be 
either positive or negative and have different values. Opposite rotors attract each other, while 
negative rotors repel each other. Therefore, by analogy, the angular velocity ±ω can be called the 
“magnetic charge”. 

According to Ampere's hypothesis, a magnet consists of many elementary magnetic rotors 
oriented in one direction. The magnet must be considered in vector space, since its magnetism 
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The time evolution of the charge vector values is represented by a dynamic model in state space, where the STM corresponds to the 
complex Hamiltonian operator. It is shown that an electron can perform quantum jumps with conservation of energy or rotate infinitely 
in an orbit with a constant radius in 4D. When using a three-frequency quaternion, the rotation orbit becomes more complex. Using 
the Cauchy-Riemann conditions, the linearity of the model allows us to obtain conditions that correspond to the law of conservation of 
energy and the principle of superposition.

The solution to the state-space dynamics equation, which is a linear homogeneous differential equation with constant coefficients, 
will be an exponential raised to the STM power. Since the charge model is based on a hypercomplex signal, then according to Euler's 
formula, hypercomplex numbers are represented in the form of harmonic functions sine and cosine with angular frequencies changing 
over time in a coordinate system with one real axis corresponding to the magnitude of the charge and with three imaginary (spatial) axes 
corresponding to the electric flow.

It is shown that using the quaternion Fourier transform it is possible to establish a connection between the magnitude of the charge 
elements and the value of the amplitudes and phases of the harmonics that form them, i.e., to find the frequency spectra of the charge 
vector elements. According to Parseval's equality for the quaternion Fourier transform, the charge value of the 4D electron vector is 
equal to the energy value of the harmonic functions of their generators.

3.2 Quaternion Magnetostatic Equations
Faraday introduced the concept of magnetic flux and used lines in space to visualize the magnetic field. He called these lines flux lines 
or lines of force, which show the direction of magnetic field strength at each point in space. In an electric field, it is clear that the electric 
flow is formed by particles that have charges and are called electrons. By analogy, we can say that the magnetic flux consists of particles, 
which we will call rotors.

As is known, the electron has spin, which is a form of angular momentum and is its fundamental property, like charge. Therefore, the 
electron acts as a charge in electrical interaction and as a rotor in magnetic interaction. The circulating current (rotor) creates a magnetic 
field. Each rotor produces magnetic intensity. Just like the charge, the angular velocity of the rotor ω can be either positive or negative 
and have different values. Opposite rotors attract each other, while negative rotors repel each other. Therefore, by analogy, the angular 
velocity ±ω can be called the “magnetic charge”.

According to Ampere's hypothesis, a magnet consists of many elementary magnetic rotors oriented in one direction. The magnet must be 
considered in vector space, since its magnetism depends on its location relative to the coordinate axes in 3D. The magnetic field vector 
starts at the center of the rotor and is perpendicular to it. Rotors with different directions of rotation are attracted to each other, forming 
a scalar. In this case, the imaginary components are compensated and the poles of the connected magnets disappear, forming a large 
magnet also with two poles.

Thus, an electron, which has an electric charge, is a scalar particle and forms charged bodies whose intensity is the same in all directions; 
a rotor is a vector particle and forms magnetic bodies whose intensity is perpendicular to the radius of rotation of the circulating 
currents. An electron, due to duality, manifests itself as a charge during electrical interaction, and as a rotor during magnetic interaction. 
A magnetic field can arise when an electric field circulates. The magnetic field of a coil is made up of the magnetic fields of individual 
turns. Electric flux is the flow of electron charges. Magnetic flux is the flow of electron spins (rotors).

In the classical theory of electromagnetism, it is stated that the lines of magnetic flux are closed and do not end at magnetic charges, since 
they do not exist, therefore 	   . However, there is magnetic intensity and magnetic flux. Magnetic intensity and magnetic flux 
indicate the presence of rotors.

To measure the magnetic field strength, consider the following experiment. We drill a hole in the middle of a relatively large magnet and 
place it on an axis so that it rotates freely with almost no friction or inertia. We use the magnetic needle of a small compass as a point 
magnet. We will move the small compass to different points on the plane. The large magnet and the compass needle will rotate so that 
the opposite poles of the magnet and the needle point towards each other. That is, the compass needle will be affected by the force of 
the magnetic field of a large magnet. According to the Biot-Savart-Laplace law, the magnitude of the force will be the same on a circle 
whose center is located at the center of a large magnet.

This experiment is similar to the experiment with a large electric charge and with a point electric charge when measuring electrical 
intensity, which confirms Coulomb's law for charges. In the case of magnetic intensity, the Biot-Savart-Laplace law has a mathematical 
expression for magnetic intensity similar to Coulomb's law. Both show an inverse relationship with the square of the distance and a 
linear relationship between source and field. The difference between the experiment with charges and the experiment with magnets is 
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depends on its location relative to the coordinate axes in 3D. The magnetic field vector starts at 
the center of the rotor and is perpendicular to it. Rotors with different directions of rotation are 
attracted to each other, forming a scalar. In this case, the imaginary components are compensated 
and the poles of the connected magnets disappear, forming a large magnet also with two poles. 

Thus, an electron, which has an electric charge, is a scalar particle and forms charged 
bodies whose intensity is the same in all directions; a rotor is a vector particle and forms magnetic 
bodies whose intensity is perpendicular to the radius of rotation of the circulating currents. An 
electron, due to duality, manifests itself as a charge during electrical interaction, and as a rotor 
during magnetic interaction. A magnetic field can arise when an electric field circulates. The 
magnetic field of a coil is made up of the magnetic fields of individual turns. Electric flux is the 
flow of electron charges. Magnetic flux is the flow of electron spins (rotors). 

In the classical theory of electromagnetism, it is stated that the lines of magnetic flux are 
closed and do not end at magnetic charges, since they do not exist, therefore 0
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dS = B . However, 

there is magnetic intensity and magnetic flux. Magnetic intensity and magnetic flux indicate the 
presence of rotors. 

To measure the magnetic field strength, consider the following experiment. We drill a hole 
in the middle of a relatively large magnet and place it on an axis so that it rotates freely with almost 
no friction or inertia. We use the magnetic needle of a small compass as a point magnet. We will 
move the small compass to different points on the plane. The large magnet and the compass needle 
will rotate so that the opposite poles of the magnet and the needle point towards each other. That 
is, the compass needle will be affected by the force of the magnetic field of a large magnet. 
According to the Biot-Savart-Laplace law, the magnitude of the force will be the same on a circle 
whose center is located at the center of a large magnet. 

This experiment is similar to the experiment with a large electric charge and with a point 
electric charge when measuring electrical intensity, which confirms Coulomb's law for charges. In 
the case of magnetic intensity, the Biot-Savart-Laplace law has a mathematical expression for 
magnetic intensity similar to Coulomb's law. Both show an inverse relationship with the square of 
the distance and a linear relationship between source and field. The difference between the 
experiment with charges and the experiment with magnets is that the charge is a scalar quantity 
and its intensity manifests itself equally in all directions without rotation of the charge. The effect 
of magnetic force depends on the orientation of the magnet, so to maximize the effect of magnetic 
force, the magnet must be turned with the corresponding pole towards the location of the point 
magnet. 

If we consider the electron spin as a source of magnetic tension, then the rotation of the 
spin occurs without mechanical movement and without inertia. Since the spins of the electrons that 
form the large magnet are always oriented toward the location of the point magnet, it is possible 
to use Gauss's law to determine the density of spins m  or rotors in the magnet from the magnetic 
flux vector. This means that the total magnetic flux through an arbitrary closed surface with 
electrons creating a spin flux is equal to the closed circulating current, i.e., the rotor or spin: 

vol

BB BB d d dyx z
m mS

S v v
x y z

 
  

= = + + =    
  . (23) 

Physically, this means that we measure the rotors inside the magnet without taking into 
account the external lines of force. 

Using the concept of divergence, we write expression (23) for the density of rotors (spins) 
as 

BB BdivB yx z

x y z
 

= + +
  

, divB m=   (24) 

If we apply the adjoint Hamiltonian operator (12) to the expression for the quaternion 
function in algebraic form (2), then (24) can be represented as their scalar product: 
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that the charge is a scalar quantity and its intensity manifests itself equally in all directions without rotation of the charge. The effect of 
magnetic force depends on the orientation of the magnet, so to maximize the effect of magnetic force, the magnet must be turned with 
the corresponding pole towards the location of the point magnet.

If we consider the electron spin as a source of magnetic tension, then the rotation of the spin occurs without mechanical movement and 
without inertia. Since the spins of the electrons that form the large magnet are always oriented toward the location of the point magnet, it 
is possible to use Gauss's law to determine the density of spins pm  or rotors in the magnet from the magnetic flux vector. This means that 
the total magnetic flux through an arbitrary closed surface with electrons creating a spin flux is equal to the closed circulating current, 
i.e., the rotor or spin:

Physically, this means that we measure the rotors inside the magnet without taking into account the external lines of force.

Using the concept of divergence, we write expression (23) for the density of rotors (spins) as

If we apply the adjoint Hamiltonian operator (12) to the expression for the quaternion function in algebraic form (2), then (24) can be 
represented as their scalar product: 

where 		       – a function of a quaternion, represented as a vector of a pure quaternion, which is a mathematical model of 
magnetic intensity or magnetic flux in 3D space.

It is known that the magnetic flux B is related to the magnetic intensity H as  	         where     is the magnetic permeability of free space 
and 	       is the speed of light.

In contrast to expression (21), the rotor is determined by the magnetic field strength H or magnetic flux B and shows how the magnetic 
flux forms the magnetic particle rotor (spin). It is known that when an electron moves in a magnetic field, it is affected by the Lorentz 
force, which makes it rotate. When modeling an electric field or a magnetic field using quaternions, we will have expressions (21) and 
(25) of the same form for the densities pq  and pm . Accordingly, CRC (22) will also be valid for magnetic intensities. In addition, it will 
be possible to find spectra of 4D rotor vectors with different forms of amplitude changes over time and density in 4D space, similar to 
those presented in Figures 7–10.

3.3 Quaternion Electrodynamic Equations
The product of quaternions in algebraic representation is calculated as [4]

Let us write pure quaternions in the form:  			        and 	   		        Using the notation made, we write the 
product (26) of the quaternions q and p as 

The first term of the sum (26) 						          is a real number representing the scalar product: 

Let us write the second and third terms of the sum (26) as  
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depends on its location relative to the coordinate axes in 3D. The magnetic field vector starts at 
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and the poles of the connected magnets disappear, forming a large magnet also with two poles. 
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presence of rotors. 
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in the middle of a relatively large magnet and place it on an axis so that it rotates freely with almost 
no friction or inertia. We use the magnetic needle of a small compass as a point magnet. We will 
move the small compass to different points on the plane. The large magnet and the compass needle 
will rotate so that the opposite poles of the magnet and the needle point towards each other. That 
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electric charge when measuring electrical intensity, which confirms Coulomb's law for charges. In 
the case of magnetic intensity, the Biot-Savart-Laplace law has a mathematical expression for 
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f ( ) f ( ) B x y zm m u v w = − = − =  +  +  , (25) 

where  Tf ( )q u v w=  – a function of a quaternion, represented as a vector of a pure 
quaternion, which is a mathematical model of magnetic intensity or magnetic flux in 3D space. 

It is known that the magnetic flux B is related to the magnetic intensity H as 0B H= , 

where 0  is the magnetic permeability of free space and 0 0 с  =  is the speed of light. 
In contrast to expression (21), the rotor is determined by the magnetic field strength H or 

magnetic flux B and shows how the magnetic flux forms the magnetic particle rotor (spin). It is 
known that when an electron moves in a magnetic field, it is affected by the Lorentz force, which 
makes it rotate. When modeling an electric field or a magnetic field using quaternions, we will 
have expressions (21) and (25) of the same form for the densities q  and m . Accordingly, CRC 
(22) will also be valid for magnetic intensities. In addition, it will be possible to find spectra of 4D 
rotor vectors with different forms of amplitude changes over time and density in 4D space, similar 
to those presented in Figures 7–10. 

 

3.3 Quaternion electrodynamic equations 
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Let us write pure quaternions in the form: 1 2 3q [0,q] q i q j q k= = + +  and 

1 2 3p [0,p] p p pi j k= = + + . Using the notation made, we write the product (26) of the quaternions 
q and p as 
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The fourth, fifth and sixth terms of the sum (26) correspond to the vector product of pure quaternions, i.e., circulations along the 
coordinate axes i, j, k: 

Let us represent expression (27) in vector form as a product          , where matrix Q is the matrix of the time derivative of the quaternion 
function with respect to the conjugate quaternion (11), changing over time, and the vector 		         – quaternion function: 

where    				             – pure quaternions.

In expression (28), the notations for time derivatives retain the indices denoting the coordinate axes s, x, y, z in the matrix representation 
and showing that time derivatives are taken from complex functions. In the representations of functions from the quaternion p, u, v, w, 
time indices are absent and are implied by default. It is also necessary to remember that  	        is a function of time.

In the resulting vector (28), instead of a function of a quaternion          and, accordingly, a pure quaternion  f      , one can use the vectors 
of electric E or magnetic intensity H as quaternions or as pure quaternions E and H.

For the electrical intensity E or the electrical flux D, expression (28) is represented as

where                                – functions of electric field strength in quaternion representation, 		    – pure quaternion of 
electric field vector E.

Based on CRC (22), which sets the requirements of the law of conservation of energy, each element of vector (29) must be equal to 0. 
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Equation (30) represents Gauss's law (20) in the form of (21). 

Faraday's law is known, written by Maxwell in differential form:
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where 
T

x y z  =     ,  Tf ( )q u v w=  – pure quaternions. 
In expression (28), the notations for time derivatives retain the indices denoting the 

coordinate axes s, x, y, z in the matrix representation and showing that time derivatives are taken 
from complex functions. In the representations of functions from the quaternion p, u, v, w, time 
indices are absent and are implied by default. It is also necessary to remember that ( )f q  is a 
function of time. 

In the resulting vector (28), instead of a function of a quaternion ( )f q  and, accordingly, a 
pure quaternion f ( )q , one can use the vectors of electric E or magnetic intensity H as quaternions 
or as pure quaternions E and H. 

For the electrical intensity E or the electrical flux D, expression (28) is represented as 
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where pE , Eu , Ev , Ew  – functions of electric field strength in quaternion representation, 

 TE E EE u v w=  – pure quaternion of electric field vector E. 
Based on CRC (22), which sets the requirements of the law of conservation of energy, each 
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where pE , Eu , Ev , Ew  – functions of electric field strength in quaternion representation, 

 TE E EE u v w=  – pure quaternion of electric field vector E. 
Based on CRC (22), which sets the requirements of the law of conservation of energy, each 

element of vector (29) must be equal to 0. Therefore, from (29) we obtain two equations: 
E q =  – scalar equation, (30) 

,E Es t p =  + E . – vector equation. (31) 
Equation (30) represents Gauss's law (20) in the form of (21).  
Faraday's law is known, written by Maxwell in differential form: 

t = −E B . (32) 
Law (32) is usually explained as follows: the change in magnetic field B over time creates 

an electromotive force (EMF). EMF is considered induced because magnetic flux is involved in 
its creation. EMF is simply the voltage that produces current in a closed circuit. The minus sign in 
(32) shows that the EMF is in such a direction that the created current, whose magnetic flux is 
added to the original flux, reduces the magnitude of the magnetic flux. The statement that the 
induced voltage acts to oppose the change in magnetic flux is known as Lenz's law. 

In the resulting representation (31), instead of a time-varying magnetic flux, the self-
induction EMF is written, creating a current in a closed circuit that prevents an increase or decrease 
in the effective current. As can be seen from expression (31), EMF , Es t  is proportional to 
circulation E  and is subtracted from it to obtain zero energy increment. In expression (31), in 
contrast to Maxwell’s equation, there is an additional term Ep  – the vector of derivatives of the 
scalar part of the electrical field strength along the imaginary coordinate axes in matrix 
representation. This is explained by the fact that Maxwell's equations are written for 3D space and, 
when represented in quaternion form, do not take into account the scalar part. The increment of 
the scalar part of the field strength vector along the imaginary coordinates, together with the 
increment of the electric field strength vector of the imaginary part, must compensate for the 
increment of circulation so that their sum is equal to zero, and the energy of the electric field 
strength vector in the quaternion representation is preserved. 

For magnetic intensity H or magnetic flux B, expression (28) takes the form: 
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where pE , Eu , Ev , Ew  – functions of electric field strength in quaternion representation, 

 TE E EE u v w=  – pure quaternion of electric field vector E. 
Based on CRC (22), which sets the requirements of the law of conservation of energy, each 

element of vector (29) must be equal to 0. Therefore, from (29) we obtain two equations: 
E q =  – scalar equation, (30) 

,E Es t p =  + E . – vector equation. (31) 
Equation (30) represents Gauss's law (20) in the form of (21).  
Faraday's law is known, written by Maxwell in differential form: 

t = −E B . (32) 
Law (32) is usually explained as follows: the change in magnetic field B over time creates 
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its creation. EMF is simply the voltage that produces current in a closed circuit. The minus sign in 
(32) shows that the EMF is in such a direction that the created current, whose magnetic flux is 
added to the original flux, reduces the magnitude of the magnetic flux. The statement that the 
induced voltage acts to oppose the change in magnetic flux is known as Lenz's law. 
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Law (32) is usually explained as follows: the change in magnetic field B over time creates an electromotive force (EMF). EMF is 
considered induced because magnetic flux is involved in its creation. EMF is simply the voltage that produces current in a closed circuit. 
The minus sign in (32) shows that the EMF is in such a direction that the created current, whose magnetic flux is added to the original 
flux, reduces the magnitude of the magnetic flux. The statement that the induced voltage acts to oppose the change in magnetic flux is 
known as Lenz's law.

In the resulting representation (31), instead of the time-varying magnetic flux    , EMF          is written, which creates a current in a 
closed circuit. As can be seen from expression (31), EMF         is proportional to circulation           and is subtracted from it to obtain zero 
energy increment. In expression (31), in contrast to Maxwell’s equation, there is an additional term        – the vector of derivatives of the 
scalar part of the electrical field strength along the imaginary coordinate axes in matrix representation. This is explained by the fact that 
Maxwell's equations are written for 3D space and, when represented in quaternion form, do not take into account the scalar part. The 
increment of the scalar part of the field strength vector along the imaginary coordinates, together with the increment of the electric field 
strength vector of the imaginary part, must compensate for the increment of circulation so that their sum is equal to zero, and the energy 
of the electric field strength vector in the quaternion representation is preserved.

For magnetic intensity H or magnetic flux B, expression (28) takes the form:

where   			   – functions of magnetic intensity in quaternion representation,  		   – pure quaternion of the 
magnetic intensity vector H.

Based on the law of conservation of energy, we obtain the following equations from (33):

Expression (34) corresponds to Gauss's law (24) for magnetic intensity or magnetic flux, written in the form (25). Let us recall that 
this expression corresponds to the density of rotors (electron spins) that form the magnetic intensity. In Maxwell's equations, the scalar 
product is assumed to be ∆.H=0. If this is true, then magnetic intensity and magnetic flux cannot exist at different points in space, since 
only its presence indicates the presence of circulating currents (rotors).

Maxwell's equation for the circulation of the magnetic intensity vector is known [1,2]:

Ampere established that the circulation of magnetic field strength creates an electric current  	  .This electric current will be 
induced, since a magnetic field is involved in its formation. H. In (35), instead of the induced (eddy) current J in the conductor, 
its EMF     	 generator is shown. In addition, Maxwell added electric current to Ampere's equation, which is obtained by changing 
the electric flow. In (35) it is shown mathematically that electric current is formed by changing the scalar part of the magnetic intensity 
vector.

Thus, expressions for Maxwell's equations for a quaternion are obtained using the Cauchy-Riemann conditions. Basically, the resulting 
equations are similar to Maxwell's equations except for the presence of additional terms associated with the scalar part of the quaternion.

4. Conclusion
The equations of electrodynamics are obtained mathematically using the Cauchy-Riemann conditions for the quaternion. The equations 
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where pH , Hu , Hv , Hw  – functions of magnetic intensity in quaternion representation, 

 TH H HH u v w=  – pure quaternion of the magnetic intensity vector H. 
Based on the law of conservation of energy, we obtain the following equations from (33): 

H m =  – scalar equation, (34) 

, HH Hs t p =  +  – vector equation. (35) 
Expression (34) corresponds to Gauss's law (24) for magnetic intensity or magnetic flux, 

written in the form (25). Let us recall that this expression corresponds to the density of rotors 
(electron spins) that form the magnetic intensity. In Maxwell's equations, the scalar product is 
assumed to be H 0 = . If this is true, then magnetic intensity and magnetic flux cannot exist at 
different points in space, since only its presence indicates the presence of circulating currents 
(rotors). 

Maxwell's equation for the circulation of the magnetic intensity vector is known [1, 2]: 
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DH J .  

Ampere established that the circulation of magnetic field strength creates an electric current 
 =H J . This electric current will be induced, since a magnetic field is involved in its formation. 
H. In (35), instead of the induced (eddy) current J in the conductor, its EMF , Hs t  generator is 
shown. In addition, Maxwell added electric current to Ampere's equation, which is obtained by 
changing the electric flow. In (35) it is shown mathematically that electric current is formed by 
changing the scalar part of the magnetic intensity vector. 

Thus, expressions for Maxwell's equations for a quaternion are obtained mathematically 
with using the Cauchy-Riemann conditions. Basically, the resulting equations are similar to 
Maxwell's equations except for the presence of additional terms associated with the scalar part of 
the quaternion. 

IV. CONCLUSION 
The equations of electrodynamics are obtained mathematically using the Cauchy-Riemann 

conditions for the quaternion. The equations represent two systems of equations for electric and 
magnetic intensity. The equations are identical in form and consist of an equation for the scalar 
part and an equation for the vector 3D part. The scalar part of the system of equations for electrical 
field strength corresponds to Gauss's law for charge. The scalar part of the system of equations for 
magnetic intensity also corresponds to Gauss's law, in which the electron spin is considered as a 
scalar. The equations obtained mathematically for the vector parts of the quaternion basically 
correspond to Maxwell's equations for the circulation of electric and magnetic intensities, obtained 
on the basis of the experiments of Faraday and Ampere. The difference is that instead of induced 
(eddy) currents formed by electrical and magnetic intensities, electromotive forces created by these 
intensities are used. In addition, the resulting equations contain currents created by the scalar parts 
of the quaternion. As is known, Maxwell artificially, without relying on physical experiments, 
added a current formed by the change in electric flow over time to the equation of circulation of 
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where pH , Hu , Hv , Hw  – functions of magnetic intensity in quaternion representation, 

 TH H HH u v w=  – pure quaternion of the magnetic intensity vector H. 
Based on the law of conservation of energy, we obtain the following equations from (33): 

H m =  – scalar equation, (34) 

, HH Hs t p =  +  – vector equation. (35) 
Expression (34) corresponds to Gauss's law (24) for magnetic intensity or magnetic flux, 

written in the form (25). Let us recall that this expression corresponds to the density of rotors 
(electron spins) that form the magnetic intensity. In Maxwell's equations, the scalar product is 
assumed to be H 0 = . If this is true, then magnetic intensity and magnetic flux cannot exist at 
different points in space, since only its presence indicates the presence of circulating currents 
(rotors). 

Maxwell's equation for the circulation of the magnetic intensity vector is known [1, 2]: 
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Ampere established that the circulation of magnetic field strength creates an electric current 
 =H J . This electric current will be induced, since a magnetic field is involved in its formation. 
H. In (35), instead of the induced (eddy) current J in the conductor, its EMF , Hs t  generator is 
shown. In addition, Maxwell added electric current to Ampere's equation, which is obtained by 
changing the electric flow. In (35) it is shown mathematically that electric current is formed by 
changing the scalar part of the magnetic intensity vector. 

Thus, expressions for Maxwell's equations for a quaternion are obtained mathematically 
with using the Cauchy-Riemann conditions. Basically, the resulting equations are similar to 
Maxwell's equations except for the presence of additional terms associated with the scalar part of 
the quaternion. 

IV. CONCLUSION 
The equations of electrodynamics are obtained mathematically using the Cauchy-Riemann 

conditions for the quaternion. The equations represent two systems of equations for electric and 
magnetic intensity. The equations are identical in form and consist of an equation for the scalar 
part and an equation for the vector 3D part. The scalar part of the system of equations for electrical 
field strength corresponds to Gauss's law for charge. The scalar part of the system of equations for 
magnetic intensity also corresponds to Gauss's law, in which the electron spin is considered as a 
scalar. The equations obtained mathematically for the vector parts of the quaternion basically 
correspond to Maxwell's equations for the circulation of electric and magnetic intensities, obtained 
on the basis of the experiments of Faraday and Ampere. The difference is that instead of induced 
(eddy) currents formed by electrical and magnetic intensities, electromotive forces created by these 
intensities are used. In addition, the resulting equations contain currents created by the scalar parts 
of the quaternion. As is known, Maxwell artificially, without relying on physical experiments, 
added a current formed by the change in electric flow over time to the equation of circulation of 
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where pH , Hu , Hv , Hw  – functions of magnetic intensity in quaternion representation, 

 TH H HH u v w=  – pure quaternion of the magnetic intensity vector H. 
Based on the law of conservation of energy, we obtain the following equations from (33): 

H m =  – scalar equation, (34) 

, HH Hs t p =  +  – vector equation. (35) 
Expression (34) corresponds to Gauss's law (24) for magnetic intensity or magnetic flux, 

written in the form (25). Let us recall that this expression corresponds to the density of rotors 
(electron spins) that form the magnetic intensity. In Maxwell's equations, the scalar product is 
assumed to be H 0 = . If this is true, then magnetic intensity and magnetic flux cannot exist at 
different points in space, since only its presence indicates the presence of circulating currents 
(rotors). 

Maxwell's equation for the circulation of the magnetic intensity vector is known [1, 2]: 
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Ampere established that the circulation of magnetic field strength creates an electric current 
 =H J . This electric current will be induced, since a magnetic field is involved in its formation. 
H. In (35), instead of the induced (eddy) current J in the conductor, its EMF , Hs t  generator is 
shown. In addition, Maxwell added electric current to Ampere's equation, which is obtained by 
changing the electric flow. In (35) it is shown mathematically that electric current is formed by 
changing the scalar part of the magnetic intensity vector. 

Thus, expressions for Maxwell's equations for a quaternion are obtained mathematically 
with using the Cauchy-Riemann conditions. Basically, the resulting equations are similar to 
Maxwell's equations except for the presence of additional terms associated with the scalar part of 
the quaternion. 

IV. CONCLUSION 
The equations of electrodynamics are obtained mathematically using the Cauchy-Riemann 

conditions for the quaternion. The equations represent two systems of equations for electric and 
magnetic intensity. The equations are identical in form and consist of an equation for the scalar 
part and an equation for the vector 3D part. The scalar part of the system of equations for electrical 
field strength corresponds to Gauss's law for charge. The scalar part of the system of equations for 
magnetic intensity also corresponds to Gauss's law, in which the electron spin is considered as a 
scalar. The equations obtained mathematically for the vector parts of the quaternion basically 
correspond to Maxwell's equations for the circulation of electric and magnetic intensities, obtained 
on the basis of the experiments of Faraday and Ampere. The difference is that instead of induced 
(eddy) currents formed by electrical and magnetic intensities, electromotive forces created by these 
intensities are used. In addition, the resulting equations contain currents created by the scalar parts 
of the quaternion. As is known, Maxwell artificially, without relying on physical experiments, 
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where pH , Hu , Hv , Hw  – functions of magnetic intensity in quaternion representation, 

 TH H HH u v w=  – pure quaternion of the magnetic intensity vector H. 
Based on the law of conservation of energy, we obtain the following equations from (33): 

H m =  – scalar equation, (34) 

, HH Hs t p =  +  – vector equation. (35) 
Expression (34) corresponds to Gauss's law (24) for magnetic intensity or magnetic flux, 

written in the form (25). Let us recall that this expression corresponds to the density of rotors 
(electron spins) that form the magnetic intensity. In Maxwell's equations, the scalar product is 
assumed to be H 0 = . If this is true, then magnetic intensity and magnetic flux cannot exist at 
different points in space, since only its presence indicates the presence of circulating currents 
(rotors). 

Maxwell's equation for the circulation of the magnetic intensity vector is known [1, 2]: 
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Ampere established that the circulation of magnetic field strength creates an electric current 
 =H J . This electric current will be induced, since a magnetic field is involved in its formation. 
H. In (35), instead of the induced (eddy) current J in the conductor, its EMF , Hs t  generator is 
shown. In addition, Maxwell added electric current to Ampere's equation, which is obtained by 
changing the electric flow. In (35) it is shown mathematically that electric current is formed by 
changing the scalar part of the magnetic intensity vector. 

Thus, expressions for Maxwell's equations for a quaternion are obtained mathematically 
with using the Cauchy-Riemann conditions. Basically, the resulting equations are similar to 
Maxwell's equations except for the presence of additional terms associated with the scalar part of 
the quaternion. 

IV. CONCLUSION 
The equations of electrodynamics are obtained mathematically using the Cauchy-Riemann 

conditions for the quaternion. The equations represent two systems of equations for electric and 
magnetic intensity. The equations are identical in form and consist of an equation for the scalar 
part and an equation for the vector 3D part. The scalar part of the system of equations for electrical 
field strength corresponds to Gauss's law for charge. The scalar part of the system of equations for 
magnetic intensity also corresponds to Gauss's law, in which the electron spin is considered as a 
scalar. The equations obtained mathematically for the vector parts of the quaternion basically 
correspond to Maxwell's equations for the circulation of electric and magnetic intensities, obtained 
on the basis of the experiments of Faraday and Ampere. The difference is that instead of induced 
(eddy) currents formed by electrical and magnetic intensities, electromotive forces created by these 
intensities are used. In addition, the resulting equations contain currents created by the scalar parts 
of the quaternion. As is known, Maxwell artificially, without relying on physical experiments, 
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where pH , Hu , Hv , Hw  – functions of magnetic intensity in quaternion representation, 

 TH H HH u v w=  – pure quaternion of the magnetic intensity vector H. 
Based on the law of conservation of energy, we obtain the following equations from (33): 

H m =  – scalar equation, (34) 
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Expression (34) corresponds to Gauss's law (24) for magnetic intensity or magnetic flux, 

written in the form (25). Let us recall that this expression corresponds to the density of rotors 
(electron spins) that form the magnetic intensity. In Maxwell's equations, the scalar product is 
assumed to be H 0 = . If this is true, then magnetic intensity and magnetic flux cannot exist at 
different points in space, since only its presence indicates the presence of circulating currents 
(rotors). 

Maxwell's equation for the circulation of the magnetic intensity vector is known [1, 2]: 
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Ampere established that the circulation of magnetic field strength creates an electric current 
 =H J . This electric current will be induced, since a magnetic field is involved in its formation. 
H. In (35), instead of the induced (eddy) current J in the conductor, its EMF , Hs t  generator is 
shown. In addition, Maxwell added electric current to Ampere's equation, which is obtained by 
changing the electric flow. In (35) it is shown mathematically that electric current is formed by 
changing the scalar part of the magnetic intensity vector. 

Thus, expressions for Maxwell's equations for a quaternion are obtained mathematically 
with using the Cauchy-Riemann conditions. Basically, the resulting equations are similar to 
Maxwell's equations except for the presence of additional terms associated with the scalar part of 
the quaternion. 

IV. CONCLUSION 
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conditions for the quaternion. The equations represent two systems of equations for electric and 
magnetic intensity. The equations are identical in form and consist of an equation for the scalar 
part and an equation for the vector 3D part. The scalar part of the system of equations for electrical 
field strength corresponds to Gauss's law for charge. The scalar part of the system of equations for 
magnetic intensity also corresponds to Gauss's law, in which the electron spin is considered as a 
scalar. The equations obtained mathematically for the vector parts of the quaternion basically 
correspond to Maxwell's equations for the circulation of electric and magnetic intensities, obtained 
on the basis of the experiments of Faraday and Ampere. The difference is that instead of induced 
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Based on the law of conservation of energy, we obtain the following equations from (33): 

H m =  – scalar equation, (34) 

, HH Hs t p =  +  – vector equation. (35) 
Expression (34) corresponds to Gauss's law (24) for magnetic intensity or magnetic flux, 
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(rotors). 
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H. In (35), instead of the induced (eddy) current J in the conductor, its EMF , Hs t  generator is 
shown. In addition, Maxwell added electric current to Ampere's equation, which is obtained by 
changing the electric flow. In (35) it is shown mathematically that electric current is formed by 
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Thus, expressions for Maxwell's equations for a quaternion are obtained mathematically 
with using the Cauchy-Riemann conditions. Basically, the resulting equations are similar to 
Maxwell's equations except for the presence of additional terms associated with the scalar part of 
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assumed to be H 0 = . If this is true, then magnetic intensity and magnetic flux cannot exist at 
different points in space, since only its presence indicates the presence of circulating currents 
(rotors). 
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 =H J . This electric current will be induced, since a magnetic field is involved in its formation. 
H. In (35), instead of the induced (eddy) current J in the conductor, its EMF , Hs t  generator is 
shown. In addition, Maxwell added electric current to Ampere's equation, which is obtained by 
changing the electric flow. In (35) it is shown mathematically that electric current is formed by 
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Thus, expressions for Maxwell's equations for a quaternion are obtained mathematically 
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Maxwell's equations except for the presence of additional terms associated with the scalar part of 
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field strength corresponds to Gauss's law for charge. The scalar part of the system of equations for 
magnetic intensity also corresponds to Gauss's law, in which the electron spin is considered as a 
scalar. The equations obtained mathematically for the vector parts of the quaternion basically 
correspond to Maxwell's equations for the circulation of electric and magnetic intensities, obtained 
on the basis of the experiments of Faraday and Ampere. The difference is that instead of induced 
(eddy) currents formed by electrical and magnetic intensities, electromotive forces created by these 
intensities are used. In addition, the resulting equations contain currents created by the scalar parts 
of the quaternion. As is known, Maxwell artificially, without relying on physical experiments, 
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represent two systems of equations for electric and magnetic intensity. The equations are identical in form and consist of an equation for 
the scalar part and an equation for the vector 3D part. The scalar part of the system of equations for electrical field strength corresponds 
to Gauss's law for charge. The scalar part of the system of equations for magnetic intensity also corresponds to Gauss's law, in which 
the electron spin is considered as a scalar. The representation of a quaternion in 4D space with three spatial frequencies is consistent 
with M. Planck's hypothesis about quantum radiation and absorption of energy of elementary particles and its dependence on frequency.

The equations obtained mathematically for the vector parts of the quaternion basically correspond to Maxwell's equations for the 
circulation of electric and magnetic intensities, obtained on the basis of the experiments of Faraday and Ampere. The difference is that 
instead of induced (eddy) currents formed by electrical and magnetic intensities, electromotive forces created by these intensities are 
used. In addition, the resulting equations contain currents created by the scalar parts of the quaternion. As is known, Maxwell artificially, 
without relying on physical experiments, added a current formed by the change in electric flow over time to the equation of circulation 
of magnetic intensity. This fact confirms the necessity of a quaternion model in 4D space with a scalar coordinate in electrodynamics. 
Since the equations of electrodynamics are obtained using linear functions of the quaternion, these functions are also the solution of 
these equations.
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