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The Rational Number ρ
Let r and n be integers whose absolute values approach infinity, 
then 

Any rational number that is very near to r/n will converge to ρ

for any small integer k.

Because we are dealing with large integers, it is not necessary to 
assume that they are relatively prime. What is relevant is the limit 
of their ratio.

Proof that √2 is rational
Let 
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we can not know whether the large integers r 
and n are both even.  

Adding 1 to r and getting the limits below
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Therefore, √2 is a rational number.

√2 =
14142135623. ......d
10000000000. .......0

= 1.4142135623 ......d

where d is the last decimal digit of √2.

Remarks:  There are no irrational numbers. The 
numbers  e, π,√3, √5, … are all rational 
numbers defined by (1).
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