
Ann Comp Phy Material Sci, 2025 Volume 2 | Issue 1 | 1

Intensity Correlation Imaging and Nonnegative Dynamic Systems
Review Article

David Charles Hyland*

*Corresponding Author
David Charles Hyland, Professor Emeritus and Independent Researcher, Texas 
A&M University, USA. 

Submitted: 2025, Feb 18; Accepted: 2025, Mar 25; Published: 2025, Apr 03

Citation: Hyland, D. C. (2025). Intensity Correlation Imaging And Nonnegative Dynamic Systems. Ann Comp Phy Material 
Sci, 2(1), 01-07.

Abstract
This work is a supplement to the author’s sequence of three papers featured in Applied Optics and listed in the Reference section. 
The main contribution of the author’s algorithm was the survey of the stochastic search algorithm required to determine the true 
noise-free image via the Brown-Twiss effect with enormously small integration times. A key element in the algorithm was the 
introduction of initial conditions where the values of the intensity pixels are assumed to be mutually statistically independent 
and uniformly distributed over the range  [0, δ] where δ there is a (very small) positive constant. This algorithm performed 
quite well, but the small initial conditions are unnecessary, as well as other complications that should be simplified. Here 
we streamline the algorithm in the form of a discrete-time dynamic system and explore the alternate features and benefits of 
compartmental nonnegative dynamic systems. 
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1. Introduction
Recent work of the present Author has succeeded in the vast reduction of integration times that have so long plagued the Hanbury Brown-
Twiss effect. The way is now open to reap the advantages of simple, inexpensive flux-collecting hardware, immunity to seeing conditions, 
and unlimited baselines and image resolution. Furthermore, since the Brown- Twiss effect has been extended to two-dimensional 
imaging; it is appropriate that we term the algorithm the Intensity Correlation Imaging (ICI) algorithm. Within the mathematics featured 
in references [1-3] the reduction of integration times has been accomplished by means of the Noise Reducing Phase Retrieval (NRPR) 
algorithm which is embedded within a Stochastic Search algorithm. In the complex analysis of, initial conditions, such as small random 
perturbations in the pixel intensities and other complexities, the algorithm performed very well [3]. However, in this paper, we update 
and simplify the algorithm by constructing a discrete-time dynamic system. Moreover, not only does the algorithm perform as well as 
the original, but we also introduce the benefits of a nonnegative dynamic system. We progress as follows. Section 2 begins with the 
NRPR algorithm, which contains the correct integration times and sets up the foreground/background dichotomy. Section 3 transforms 
the NRPR steps into a discrete-time, nonnegative dynamic system. Section 4 merges the dynamic system within the Stochastic search 
algorithm structured to gradually reduce the “Box” sizes. 

1.1. Description of the NRPR Algorithm
It is supposed that there is an array of flux collecting apertures arranged so as to form a square, evenly spaced grid on the “u-v plane” 
(which, in interferometry, denotes the Fourier domain projected on the plane perpendicular to the target line-of-sight). The grid has a 
one-to-one correspondemce to a matrix of N × N pixels forming the construction of an image of a luminous object amidst a black sky. 
The defining characteristics of the NRPR algorithm are:
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1.2.  The NRPR Algorithm as a Discrete-Time Dynamic System
As the next step in our analysis, we recast the equations of Figure 2 into a discrete-time dynamic system such that all the principal 
quantities are indicated by the sequence of integers k = 0, 1, ... ∞. We start with the initial conditions and the first iteration and recite the 
sequence of further iterations, keeping the algorithm in its proper order:

where the function rand (N, N) is an N × N matrix having statistically independent elements that are uniformly distributed in [0,1). Now 
consider the equations pertaining to k = 0 and 1:
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. Then the first three equations above are devoid of the very small quantities

δ and ε, therefore we have:
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(5.b) also leads to the convergence of  g k to zero as demonstrated in Reference [1] . Therefore in the limit,  
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Clearly the phase factor,  2 , 1i rand N Ne     , in    0  and 0g g   is a statistical ensemble that encompasses all 
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In Figure 4 we demonstrate that the dynamic system (5. a-f) behaves essentially as in References [1-3] when in the 
case that the smallest box size does fully contain the illuminated object. Alternately, one can start with a box size 
that is smaller than the illuminated object and then increase the box sizes until the noise-free image is found. With 
this strategy, the number of NRPR computations is distinctly reduced. In fact, if the number of runs is large for the 
case of decreasing box size, then for the same image, the number of runs for the case of increasing box sizes is 
halved. The latter strategy, as mentioned in Reference[1] is clearly superior.   
 

5. Conclusion 
 
Reference [1] created an algorithm that emphatically reduced the integration times of the Brown-Twiss effect as 
applied to two-dimensional imaging (termed ICI). However, there were a number of complexities in the algorithm 
that merited simplification. This paper has succeeded in streamlining the ICI algorithm by transforming the six steps 

 
Figure 4: This illustrates how the Stochastic Search uses the nonnegative 
dynamic system to determine the noise-free image by the regular 
reduction of the Box size. We start with  and run n = 2 trials. 
Then we then select and , each having two trials. The 
satellite is 50% the size of the 40 pixel box. Consequently we discover 
that the final pair of images are fully correlated and thus are the noise-
free image. 
The parameters of the dynamic system are  and . Each 
trail was computed for 3000 iterations  in approximately 3.5 seconds 
using an Apexx W Class, thus producing the noise-free image in 21 
seconds.  

In Figure 4 we demonstrate that the dynamic system (5. a-f) behaves essentially as in References [1-3] when in the case that the smallest 
box size does fully contain the illuminated object. Alternately, one can start with a box size that is smaller than the illuminated object 
and then increase the box sizes until the noise-free image is found. With this strategy, the number of NRPR computations is distinctly 
reduced. In fact, if the number of runs is large for the case of decreasing box size, then for the same image, the number of runs for the 
case of increasing box sizes is halved. The latter strategy, As mentioned in Reference [3], the latter strategy is clearly superior.

2. Conclusion
Reference [1-3] created an algorithm that emphatically reduced the integration times of the Brown-Twiss effect as applied to two-
dimensional imaging (termed ICI). However, there were a number of complexities in the algorithm that merited simplification. This paper 
has succeeded in streamlining the ICI algorithm by transforming the six steps of the original algorithm into a discrete-time, nonnegative 
dynamic system having a three-dimensional state space. It is demonstrated that this dynamic system fully replicates the original to within 
O(ε ). Furthermore, the simplified product, being a nonnegative system, is well suited to partner with Artificial Intelligence automation 
such as nonnegative spiking neural networks. Such automation can be expected soon [4]. 
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