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Abstract
The strategic planning and operational management of microgrids have become imperative focal points in the evolving landscape 
of contemporary power systems, predominantly instigated by the pervasive deployment of distributed generation (DG) technologies 
and the progressive institutionalization of advanced demand response programs (DRPs). The integration of renewable DG resources, 
inherently characterized by stochastic variability and temporal intermittency, introduces profound layers of uncertainty into the 
microgrid’s day-ahead scheduling and operational paradigm. In response to these challenges, this study delineates a comprehensive 
stochastic optimization framework for day-ahead microgrid operational planning, wherein the synergistic incorporation of DRPs 
and Conservation Voltage Reduction (CVR) is pursued to enhance economic optimality and operational robustness. The proposed 
model concurrently assimilates time-of-use (TOU) pricing schemes and incentive-based demand response modalities. Specifically, 
TOU programs are employed as load modulation instruments to counteract the volatility of renewable generation, whereas incentive-
driven strategies are leveraged to alleviate the inherent commitment uncertainty associated with distributed renewable resources by 
promoting flexible end-user participation. Moreover, CVR is systematically integrated with voltage-dependent load modeling techniques 
to facilitate the attenuation of peak demand and improve energy efficiency. The uncertainty associated with renewable energy outputs 
is rigorously addressed through the Information Gap Decision Theory (IGDT), thereby enabling the formulation of resilient and risk-
averse operational strategies under conditions of profound epistemic uncertainty. The resultant non-linear optimization problem 
is computationally resolved through the deployment of a Genetic Algorithm (GA) applied to a standardized microgrid test system. 
The obtained simulation outcomes substantiate the proposed framework’s capacity to achieve operational cost minimization while 
concurrently augmenting system reliability and adaptability in the presence of significant uncertainty.
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1. Introduction
Conservation Voltage Reduction (CVR) is a critical strategy employed in power distribution systems to maintain voltage levels within 
regulatory limits, as defined by utility standards. Voltage regulation (VR) can be implemented through various methods depending 
on system conditions and operational demands. Among these, CVR adjusts the voltage within the permissible range—typically by 
lowering it—to achieve energy efficiency and economic benefits. CVR has attracted considerable attention due to its potential to reduce 
operational costs, enhance energy savings, and improve system reliability. By fine-tuning the voltage profile of distribution networks, 
CVR helps manage load demand and improve overall network efficiency [1,2].

Extensive studies have demonstrated the efficacy of CVR in minimizing peak loads, reducing energy losses, conserving electricity, 
lowering operational expenditures, and enhancing power system security. For example, presents a comprehensive review of CVR 
applications and its potential to facilitate energy-efficient and cost-effective operations [3]. In both the advantages and challenges of 
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CVR are examined, particularly in the context of cost savings and energy conservation [4]. Study optimally applies CVR for microgrid 
planning, focusing on the sizing and siting of distributed generation (DG) and capacitors to maximize branch efficiency [5]. Similarly, 
evaluates the energy-saving effects of CVR and voltage optimization in Ireland’s distribution network [6]. Research in investigates the 
use of CVR to reduce energy consumption and manage peak demand, especially under conditions of limited energy availability [7]. 
Additionally, explores how CVR can enhance system stability, security, and reliability [8].

The integration of voltage regulation with other optimization problems has further advanced multi-objective planning in distribution 
networks [9]. For instance, proposes a novel framework for simultaneous load scheduling and voltage regulation. Study examines 
coordinated load-sharing and voltage regulation strategies within microgrids, while addresses the optimal planning of energy storage 
systems by incorporating CVR effects to minimize both investment and operational costs [10,11]. Other works, such as and, focus on 
CVR’s application in load modeling using machine learning (MSVR) and the use of voltage-current droop characteristics for power 
consumption reduction, respectively [12,13].

Demand Response Programs (DRPs) are equally crucial for distribution system operators, offering benefits such as reduced operational 
costs, improved system flexibility, and increased economic returns [14,15]. By shifting or curtailing load during specific periods, DRPs 
can influence voltage profiles and overall system performance. Prior studies have investigated the interactions between DRPs and voltage 
regulation, while  explores emergency DRPs for real-time voltage control in automated distribution systems [16-18]. Given that DRPs 
can directly affect voltage levels, it is imperative to examine the combined impact of incentive-based DRPs microgrid performance. The 
existing literature emphasizes the importance of co-optimizing DRPs and VR to achieve enhanced flexibility and economic performance 
in modern energy systems [19].

In an integrated DR strategy for microgrids is proposed, enabling autonomous energy bids based on real-time electricity pricing to avoid 
market conflicts [20]. A market-clearing mechanism with priority-based trading is also introduced to ensure incentive compatibility. 
Furthermore, investigates the technical, economic, and market implications of CVR in distribution networks. As global electricity 
demand continues to rise, optimizing voltage levels and energy management becomes increasingly important [21]. Study introduces 
a novel voltage and VAR management (VVM) model that integrates advanced technologies such as energy storage systems (ESSs), 
time-of-use DRPs (TOU-DRPs), and photovoltaic (PV) inverters, alongside conventional devices like on-load tap changers (OLTCs) 
and switchable capacitor banks (SCBs) [22]. In  a stochastic bi-level model is developed for coordinated electricity-heat scheduling and 
storage in microgrids, integrating DRPs and ESSs to maximize social welfare [23]. The focus of these studies lies in the evaluation of 
incentive-based DRPs under uncertainty [24,25].

1.1 Key Innovations of this Study:
This study introduces a novel approach to managing uncertainty in wind generation through dynamic DR contracts [26,27]. If, for 
instance, wind generation is forecasted at 12 MW and the actual output deviates by ±1 MW, DR contracts are designed to accommodate 
this 1 MW range. As the average forecast increases, the corresponding standard deviation also scales linearly, enabling proportional DR 
adjustments. For example, a forecast of 18 MW with a ±2 MW deviation leads to DR commitments covering that range.

Unlike previous studies that used fixed uncertainty bounds and static DR agreements, this work dynamically adjusts DR contracts based 
on real-time uncertainty predictions. By considering the statistical relationship between forecasted averages and variability, the approach 
minimizes over-commitment (which inflates costs) and under-commitment (which leads to load shedding and penalty payments). Two 
key innovations are emphasized:

Load participation in DRPs is governed by dynamically applied incentive mechanisms rather than fixed incentives.

The uncertainty in renewable generation is modeled using the temporal relationship between forecasted averages and standard deviation, 
allowing for optimized DRP deployment that enhances reliability and reduces operating costs.

1.2 Paper Organization
The remainder of this paper is structured as follows:
Section II presents the problem formulation, including objective functions and system constraints.
Section III details the proposed CVR strategy and the employed optimization algorithm.
Section IV discusses the simulation setup and analysis.
Section V presents the results and discussion.
Finally, Section VI concludes the paper and outlines future work.
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The uncertainty in renewable generation is modeled using the temporal relationship between forecasted 

averages and standard deviation, allowing for optimized DRP deployment that enhances reliability and 

reduces operating costs. 

 

1.2 Paper Organization 

The remainder of this paper is structured as follows: 

Section II presents the problem formulation, including objective functions and system constraints. 

Section III details the proposed CVR strategy and the employed optimization algorithm. 

Section IV discusses the simulation setup and analysis. 

Section V presents the results and discussion. 

Finally, Section VI concludes the paper and outlines future work. 

 

2. Problem Modeling and Notations 

2.1 Indices, Functions, Variables, and Parameters 

 Indices 

Generators   
Time   
The number of wind turbines     

Functions  

The function of converting wind speed to wind turbine generation      

The function of converting the radiation value into photovoltaic generation      

 Variables 

Revenue         

Reliability             

Income        

Cost      

The generation rate of unit i at time t      
Generation cost         

Spining reserve cost         

Reliability cost         
Binary variable of starting unit i at time t      

Binary variable of unit i being turned on at time t      

Change in available power due to event s at time t       
Change of available reservation due to event s at time t       

Total reservation at time t    
The probability of event s at time t      
Binary variable of load shedding due to event s at time t      
The energy in the battery at time t  ( ) 
The expected amount of energy not supplied      

The possibility of load shedding      

The amount of reservation of unit i at time t      

Battery generation or consumption power     

 Parameters 

Baseline generation cost per MW      

Spining reservation cost per MW      
The cost of setting up unit i     

Lost load value      

The maximum probability of acceptable load shedding at time t          

Load value at time t     

Generation capacity of unit i       

The minimum generation by unit i       

The maximum slope of the increase in the generation by unit i      

Time steps   

The actual wind speed value at time t     
       

The forecasted wind speed value at time t     
     

Max battery charge/discharge rate     
      ,     

     

The maximum battery capacity     
  

Battery charge efficiency    

Initial and final battery charge levels     ,     

Battery capacity limits       ,      

Duration of each outages     

 

 

2.2 Objective Function and Constraints: Baseline Model 

This model is a multi-objective optimization problem targeting short-term power system operations, 

emphasizing both economic efficiency and reliability. The two primary objectives are maximizing 

revenue and ensuring system reliability. 

 

2.3 Objective Functions 
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2.2 Objective Function and Constraints: Baseline Model
This model is a multi-objective optimization problem targeting short-term power system operations, emphasizing both economic 
efficiency and reliability. The two primary objectives are maximizing revenue and ensuring system reliability.

2.3 Objective Functions
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The first objective seeks to maximize revenue, calculated as power sale income minus operational costs 

(generation, reserve, and reliability). The second objective targets system reliability, represented by the 

Loss of Load Probability (LOLP): 
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Where      and      represent the discharge and charge power of the battery, respectively.     
  is the 

maximum allowable charging or discharging power, and    denotes the efficiency of the 

charging/discharging process. The parameter,    is the duration of each time step (in hours), and  ( ) is 

the energy stored in the battery at time  . The battery must maintain energy levels between specified 

bounds, with    and    being the initial and final energy levels, and     and      representing the 

minimum and maximum battery capacity, respectively. 

 

Similar to the battery system, the upstream power grid is modeled as both a power source and sink, 

depending on system needs. Its interaction with the microgrid is constrained by the capacity of the 

communication transformer connecting the two. The cost of importing electricity from, or exporting to, 

the upstream grid is based on the prevailing wholesale market price. 

2.5 Demand Response Program Modeling 

As previously discussed, two types of Demand Response Programs (DRPs) are considered in this study: 

incentive-based programs and price-based programs such as Time-of-Use (TOU), Real-Time Pricing 

(RTP), and Critical Peak Pricing (CPP). The main objective of DRP modeling is to ensure that the total 

electricity cost for consumers is reduced after program participation, without compromising their comfort. 

The model also captures the tendency of loads to participate in DRPs. 
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the load. The optimization objective is formulated as follows [6]: 
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Where EPt is the price of electricity in each time interval t, PDt is the electricity demand of shedabble loads at time t, and xt is the decision 
variable indicating the load reduction level, allowing up to 30% of load to be shed. 
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Consumers participating in this program are incentivized with a rebate equal to the electricity price at the time of shedding.

2.5.2 Price-Based Programs (TOU, RTP, CPP)
In price-based DRPs, the cost of power consumption is influenced by the program type. The total cost for TOU and CPP participants is 
expressed as follows [2]:

 Where     is the price of electricity in each time interval t,     is the electricity demand of shedabble 

loads at time t, and    is the decision variable indicating the load reduction level, allowing up to 30% of 

load to be shed.  

 

Consumers participating in this program are incentivized with a rebate equal to the electricity price at the 

time of shedding. 

 

2.5.2 Price-Based Programs (TOU, RTP, CPP) 

In price-based DRPs, the cost of power consumption is influenced by the program type. The total cost for 

TOU and CPP participants is expressed as follows [2]: 

 (17) 
         (          )∑      ( )  

 

   
 ∑ ( )     ( )
 

   
 

 

 (18) 
  ( )  (        )     ( )(  ∑ (   )    

( )     
   

 

   

) 

The percentage of participation in each of these programs is a variable, that is, some shiftable loads are 

contributed in the TOU program, some in the real-time pricing (RTP) program, and some in the CPP 

program. The sum will be 1. Since the TOU and CPP programs follow the same equation, Equation (17) 

is written for them. The only difference between these two programs in equation (18) is the design of 
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These parameters are solved using simultaneous equations, based on historical consumption, pricing, and 

temperature data. 

 

2.6 Modeling the Load Response Uncertainty Using the IGDT Method 

In the Information-Gap Decision Theory (IGDT) method, a set of possible uncertainties is defined, and 

the objective function, which depends on parameters subject to uncertainty, is optimized to be flexible in 

the face of these input uncertainties. 

 

This section considers the participation rate in the Demand Response Program (DRP) as a non-

deterministic parameter and evaluates how its effects on the problem can be controlled. Therefore, 

parameters γ₁ to γ₃ are treated as non-deterministic according to the model. 

 

The problem formulation is represented by equations (23) to (26), incorporating a risk-aversion strategy. 

The risk-averse strategy is selected because the problem is not risk-tolerant. The objective is to make the 

system as resistant as possible to the uncertainty in load participation. This is critical because any 

deviation in the participation rate, compared to the predicted value under a risk-taking strategy, may lead 

to an imbalance between generation and consumption. Such an imbalance is unacceptable for the grid 

operator. 
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These parameters are solved using simultaneous equations, based on historical consumption, pricing, and temperature data.

2.6 Modeling the Load Response Uncertainty Using the IGDT Method
In the Information-Gap Decision Theory (IGDT) method, a set of possible uncertainties is defined, and the objective function, which 
depends on parameters subject to uncertainty, is optimized to be flexible in the face of these input uncertainties.

This section considers the participation rate in the Demand Response Program (DRP) as a non-deterministic parameter and evaluates 
how its effects on the problem can be controlled. Therefore, parameters γ₁ to γ₃ are treated as non-deterministic according to the model.



J Electrical Electron Eng, 2025 Volume 4 | Issue 2 | 7

The problem formulation is represented by equations (23) to (26), incorporating a risk-aversion strategy. The risk-averse strategy is 
selected because the problem is not risk-tolerant. The objective is to make the system as resistant as possible to the uncertainty in load 
participation. This is critical because any deviation in the participation rate, compared to the predicted value under a risk-taking strategy, 
may lead to an imbalance between generation and consumption. Such an imbalance is unacceptable for the grid operator.
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Where X represents the decision variable, including the spot prices and the value of the proposed load 

shedding. α is the radius of uncertainty, and β is the percentage of deviation from the objective function in 

the risk-aversion strategy. 

 

2.7 Load Management through CVR 

One of the innovative approaches to reducing energy consumption and peak load without directly 

interfering with the consumption patterns of end-users is Conservation Voltage Reduction (CVR). This 

method facilitates load reduction by controlling the voltage of the consumption buses to a minimum level, 

ensuring that the system's security is not compromised. This is crucial, as a significant portion of the load 

is inherently dependent on the voltage range. 

 

Different types of loads exhibit varying responses to voltage reductions. For instance, the power 

consumed by cooling loads decreases as their voltage is reduced. However, these systems must operate 

for a longer duration to reach the desired temperature, as they are operating with less power. Therefore, 

their overall energy consumption remains unaffected. In contrast, the energy consumption and power of 

other load categories may decrease when the voltage is reduced. Additionally, some loads, particularly 

those operating at constant power, experience minimal change in response to voltage fluctuations. 

Consequently, the response rate of a given grid to CVR is contingent upon the specific model and 

characteristics of its loads. According to existing studies, the application of CVR typically results in a 

reduction of energy consumption ranging from 0.5% to 4%. 

To assess the impact of CVR on the optimal utilization of a microgrid, grid load distribution equations 

must be examined alongside objective functions and constraints. The modeling of this problem 

incorporates a radial grid structure, voltage-dependent loads, on-load tap-changer (OLTC) transformers, 

and shunt capacitors. 

 

In the radial structure, the number of branches equals the number of nodes minus one. The system’s initial 

bus, denoted as bus number 0, serves as the connection point between the distribution grid and the 

transmission system, with a constant voltage range. The load distribution equations for each branch are as 

follows: 
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Where i represents the bus number, and   ,   , and     denote the injected active power, injected reactive 

power, and voltage at bus j, respectively. The subscript   , refers to the line between buses i and j, with 

   ,    ,    , and      representing the resistance, reactance, active power, and reactive power of line   ,, 

respectively. The superscript   denotes the load component. The load is modeled using the ZIP model, 

and the relationship between load and voltage is given by the following equations: 
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Where the subscript 0 indicates the load value at nominal voltage, and the subscripts Z, I, and P refer to 

constant impedance, constant current, and constant power. 

 

The model of transformers with OLTC is represented as a device between buses   . with the following 

load distribution equations: 
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Where     represents the tap ratio, constrained between its minimum and maximum values. Additionally, 

the shunt capacitor is modeled as a parallel susceptance at the corresponding bus, with its injected 

reactive power depending on the voltage level. The susceptance value can be varied between 0 and its 

maximum allowable value: 
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Where     represents the tap ratio, constrained between its minimum and maximum values. Additionally, 

the shunt capacitor is modeled as a parallel susceptance at the corresponding bus, with its injected 

reactive power depending on the voltage level. The susceptance value can be varied between 0 and its 

maximum allowable value: 

Where i represents the bus number, and pj, qj, and vj  denote the injected active power, injected reactive power, and voltage at bus j, 
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power, and reactive power of line ij,, respectively. The superscript d denotes the load component. The load is modeled using the ZIP 
model, and the relationship between load and voltage is given by the following equations:
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current, and constant power.

The model of transformers with OLTC is represented as a device between buses ij. with the following load distribution equations:
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According to IEEE Std. 1547-2018, distributed generation (DG) resources are classified into two 

categories based on their reactive power capacity and voltage regulation ability: resources with limited 

voltage regulation (suitable for systems with low penetration coefficients) and those with greater voltage 

regulation capacity (typically found in systems with higher penetration coefficients). This study focuses 

on resources with significant voltage control capabilities. 

 

The active and reactive power outputs of these resources are constrained by their capability curve and are 

mathematically represented by the following equations: 
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Four operational modes for voltage-power control of the source are considered: constant power factor, 

voltage-reactive power, active power-reactive power, and constant reactive power. The relationship 

between active and reactive power in these four modes is described by the following equations: 
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3. Simulation Results 

The scenarios for non-deterministic parameters, including wind, load, and solar generation, are based on 

the data presented in [8]. The grid topology, which will be provided in the final section of the numerical 

studies, will facilitate the analysis of the Conservation Voltage Reduction (CVR) results. 

 

In this study, a microgrid is examined numerically. The characteristics of load behavior and energy 

pricing in the upstream grid are outlined in [2]. Subscribers consume power at a fixed rate of 15 cents per 

kWh, and the upstream grid rate is utilized for power exchange between the microgrid and the main grid. 
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According to IEEE Std. 1547-2018, distributed generation (DG) resources are classified into two categories based on their reactive 
power capacity and voltage regulation ability: resources with limited voltage regulation (suitable for systems with low penetration 
coefficients) and those with greater voltage regulation capacity (typically found in systems with higher penetration coefficients). This 
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3.1 Simulation Without Considering Demand Response (DR) 
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3.1.2 Simulation Results with Load Shedding Penalty
For this scenario, the total cost of providing load is 16,703.97 cents. The LOLP values, as shown in Figure 5, are reflective of the 
inclusion of the load shedding penalty.

Figure 5: Hourly LOLP With Load Shedding Penalty

The expected value of lost energy is calculated as 0.357 kWh. It is important to note that the load interruption penalty and reservation 
cost represent two conflicting objectives in the optimization process.

3.1.3 Simulation Results with Bi-Objective Load Shedding Penalty
In this case, the total cost of supplying the load is 16,902.19 cents. The LOLP values are illustrated in Figure 6.

Figure 6: Hourly LOLP With Bi-Objective Load Shedding Penalty

Additionally, Figure 7 presents the hourly cost under this multi-target scenario.
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The expected value of lost energy in this case is 0.263 kWh, and the total cost is 16,902 cents. For a comparative analysis, the results are 
summarized in Table 2, which compares the solutions obtained using three different solution methods.
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GA 15778 0.607 16702 0.478 16902 0.263
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According to the table, the cost shows an increasing trend as load shedding penalty is incorporated. In the first case study, where there 
is no load shedding penalty, the reservation is allocated solely to meet the LOLP constraint, resulting in a lower cost. In the second 
study, the inclusion of the load shedding penalty leads to a higher cost, but the reliability (measured by EENS) improves as a result. This 
improvement in reliability is attributable to the load shedding penalty embedded in the objective function. Lastly, the third study, which 
utilizes a bi-objective approach, incurs a higher cost compared to the second study. This is due to the simultaneous optimization of both 
the reliability and cost objectives, as opposed to focusing solely on cost in the second study

3.2 Simulation Considering Demand Response (DR)
The ambient temperature, which models the participation rate of subscribers in the Critical Peak Pricing (CPP) program, is illustrated in 
Figure 8. The parameters ep and ew, used in the modeling of CPP, are set to -0.83 and 1.2085, respectively.
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and 10% participation rates applied to the load curve. The updated load for shedding in these two 

scenarios is shown for the different components of the program. The critical peak values of ew and ep are 

1.2085 and -0.83, respectively, corresponding to the pricing program. This study is conducted under two 
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Figure 8: Ambient Temperature Over 24 Hours

Figures 9 and 10 present the results of the Time-of-Use (TOU) programs under two scenarios, with 5% and 10% participation rates 
applied to the load curve. The updated load for shedding in these two scenarios is shown for the different components of the program. 
The critical peak values of ew and ep are 1.2085 and -0.83, respectively, corresponding to the pricing program. This study is conducted 
under two distinct scenarios, 5% and 10% participation in the TOU programs, to provide a clearer comparison.
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Figure 9: Updated Load for 5% Participation in the TOU Programs

Figure 10: Updated load for 10% Participation in the TOU Programs

3.2.1 Simulation Considering Interruptible Load Program and 5% Participation in the TOU Program
In the previous section, the cost paid by the loads for supplying electrical energy was constant and amounted to 45,793.5 cents. However, 
in this section, loads participate voluntarily in demand response programs. The costs associated with loads participating in the Time-
of-Use (TOU) programs before and after participation are compared in Table 3. These programs are voluntary and should be designed 
such that the amount received from the load is greater than the total payment made to the resources. This ensures the feasibility of their 
implementation, while also generating additional revenue for the loads when they participate.

Program Cost Before Participation (cents) Cost After Participation (cents)
TOU 1686.864 1520.229
RTP 1258.030 1022.785
CPP 1118.823 768.739

Table 3: Comparison of the Cost of the Loads Participating in TOU Programs Before And After Implementation (5% 
Participation)

In this way, the loads are incentivized to participate in the TOU program. The total cost function value in this scenario is 16,423.78 cents.

3.2.2 Simulation Considering Interruptible Load Program and 10% Participation in the TOU Program
The cost of responsive demands before and after the implementation of the program is shown in Table 4. For all three programs, the cost 
after participation exceeds the cost before participation, indicating the correct design of the Demand Response Program (DRP).



J Electrical Electron Eng, 2025 Volume 4 | Issue 2 | 13

Program Cost before participation (cent) Cost after participation (cent)
TOU 3373.728 3040.457
RTP 2516.061 2045.571
CPP 2237.647 1537.479

Table 4: Comparison of the Cost of the Loads Participating in TOU Programs Before and After Implementation (10% 
Participaation)

The value of interruptible load is determined during the optimization process due to its inherent variability. This value will be provided 
later in the study. The total cost function value in this mode is 12,679.66 cents.

3.3 Incorporating the Uncertainty of Responsive Demand Participation
In this section, the uncertainty associated with the participation of responsive demands in demand response programs is modeled 
using the Info-Gap Decision Theory (IGDT) framework introduced in Chapter 3. In previous sections, fixed participation scenarios 
were considered: 0% and 10% for interruptible loads, and 5% and 10% for responsive loads. These discrete scenarios were used to 
demonstrate the effect of participation rate on the objective function outcomes. To enhance this analysis, three scenarios are examined 
for responsive demands, as summarized in Table 5, to illustrate the impact of varying participation levels.

Objective function TOU program Incentive-based program
16902 0 0
16423 5 10
12060 10 10

Table 5: Cost Objective Function Values for Various Demand Response Participation Scenarios

As seen in the table, initial changes in participation have a minor impact on the objective function, while later increases yield significant 
cost reductions. This non-linear and non-intuitive response underscores the need to consider the uncertainty of load participation within 
DRPs. Since such uncertainty often negatively affects the objective function, a risk-averse strategy is adopted via the IGDT model. The 
goal is to ensure the robustness of the objective function in the presence of deviations from the expected participation levels.

To this end, a risk-averse solution is derived under the assumption of a 10% participation rate with a 10% deviation. The results, 
compared with the base case (objective function value of 12,060 cents), reveal that such a deviation could lead to a 40% increase in 
cost, indicating a significant impact and validating the use of robust modeling.

A sensitivity analysis is then performed on:
• The uncertainty radius of responsive demand participation (α),
• The permissible increase in the objective function (β), and
• Different Loss of Load Probability (LOLP) values.

The uncertainty radius is divided equally between incentive-based and time-based demands. The sensitivity analysis assumes that β 
varies from 5% to 15% in 2.5% increments, and LOLP ranges from 1% to 5% in 1% increments. The resulting uncertainty radii are 
plotted in Figure 11.
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(Description: As LOLP decreases, the permissible uncertainty radius also decreases. A larger β allows for a higher uncertainty radius at 
the same LOLP.)
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To evaluate the value of using a risk-averse strategy, the following two cases are analyzed:
Case 1 (Reactive Strategy): 

Assuming 10% participation was forecasted, but in reality, only 5% was achieved (i.e., 5% deviation). Applying corrective action using 
spinning reserves results in a total system cost of 13,982 cents, which is 1,922 cents higher than the base case (12,060 cents).
Case 2 (Risk-Averse Strategy): 

The forecast assumes a 10% participation with a 5% risk buffer. If full 10% participation is realized (i.e., better than expected), the total 
system cost drops to 12,611 cents, which is 410 cents lower than the conservative cost estimate of 13,021 cents from the risk-averse 
solution.
This comparison demonstrates that:

The potential cost overrun in the first case (1,922 cents) is significantly higher than the cost overestimation in the second case (410 
cents).

Thus, applying a risk-averse strategy reduces exposure to adverse outcomes due to participation uncertainty.

Moreover, in Case 1, the actual operating cost (13,982 cents) surpasses the estimate from the risk-averse strategy (13,021 cents), 
underscoring the importance of accounting for uncertainty in DRPs.
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3.4 Integration of Grid Topology and Conservation Voltage Reduction (CVR)
In this section, the underlying distribution network, including its topology and the technical specifications of its branches, is incorporated 
into the analysis. The grid under study corresponds to the standard IEEE 13-bus test system. The hourly load profile remains consistent 
with the scenarios discussed in preceding sections.

To accurately reflect the voltage sensitivity of the loads, the ZIP model is employed in the load flow analysis. Consequently, the final 
energy consumption is marginally reduced relative to the nominal value, as a portion of the load demand is inherently dependent on the 
voltage level at each bus.

The impact of implementing CVR on the hourly load demand, after incorporating demand response (DR) programs, is illustrated in 
Figure 14. The figure presents a comparative analysis of the load profile before and after the application of CVR, highlighting the overall 
reduction in demand achieved through voltage optimization.
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4. Discussions
The key insights obtained from the numerical simulations and analysis are as follows:
• Impact of Load Shedding Penalty on System Cost:
Incorporating the load shedding penalty into the objective function results in a higher total cost of supplying both the load and spinning 
reserve. This is expected, as the addition of a new cost component increases the overall objective value. To compensate, the system may 
reduce reserve levels, thereby increasing the load shedding index. Therefore, for the load shedding penalty to be effective in improving 
system reliability, its assigned value must be sufficiently high to disincentivize reserve reduction.

• Blackout Risk in High-Impact, Low-Probability Events:
The relatively low LOLP value at the cost-reliability equilibrium point indicates that blackouts are primarily caused by rare but high-impact 
events. These events, while infrequent, significantly influence the expected energy not supplied (EENS), even though their effect on the 
LOLP index is minimal.
 
• Scenario-Based Reserve Allocation:
Incremental reserves are allocated to mitigate power shortages resulting from variability in load, wind, and solar generation. However, the 
generation scheduling is based on the most probable scenario. In some cases, surplus generation may occur, which can be curtailed using 
wind or solar resources.
 
• Forecast Accuracy and Real-Time Feasibility:
Since the prediction error decreases as the forecasting time horizon shortens—and because the proposed optimization algorithm operates 
within a few minutes—non-deterministic parameters can be forecast with reasonable accuracy using this approach.

• Cost-Reliability Trade-Off Assessment via EENS:
The trade-off between system cost and reliability should be analyzed using the EENS index, as it directly represents a cost-equivalent met-
ric. This allows for straightforward integration into the objective function when improving reliability by increasing reserves.

• Benefits of Demand Response Participation:
Demand response programs (DRPs) significantly improve both the cost of load supply and system reliability. Although announced load cur-
tailments introduce additional costs, these are negligible compared to the reductions in generation and reserve costs, as well as in unplanned 
outage penalties, thus validating the value of DRPs.



J Electrical Electron Eng, 2025 Volume 4 | Issue 2 | 16

• Risk-Averse Strategy via IGDT:
As the uncertainty in responsive demand participation increases, modeling this uncertainty through IGDT and applying a risk-averse strat-
egy protects the operator from a steep rise in costs. This strategy ensures a more stable operational environment.

• Cost Risk Without Considering Participation Uncertainty:
If the uncertainty in load participation is neglected, the actual operating cost may exceed that obtained under the risk-averse strategy, espe-
cially when the predicted levels of participation are not realized.

• Effectiveness of CVR in Cooling Loads:
The addition of CVR in the grid context shows limited impact on energy consumption by cooling loads. During peak hours, these loads 
require a fixed energy input due to thermal demand. Although power is reduced under CVR, the compressor run-time increases, leading to 
minimal net energy reduction.

• DR Impact Despite Minimal Energy Savings from CVR:
Even though CVR does not significantly reduce energy consumption for cooling loads, it does lower power demand, resulting in approxi-
mately 3% improvement in DR program performance.

5. Conclusion
To extend the scope of this research and guide future studies, the following directions are recommended:
• Integrated Renewable and Storage Systems:
To ensure dispatchable and flexible power from renewable energy sources, it is advisable to consider their integration with storage systems 
in future studies.

• Reliability Evaluation Using Deterministic Criteria:
This study employed a probabilistic reliability approach, evaluating events up to the second order. Future work should include comparisons 
with deterministic reliability criteria such as N−1 or N−2, to enhance the robustness of the reliability framework.

• Scenario Correlation Modeling:
It is recommended to incorporate the correlation between uncertain parameters (load, wind, and solar radiation) in scenario generation. 
Randomly combining uncorrelated scenarios can misrepresent actual operating conditions, leading to inaccurate solutions.

• DRP Pricing Based on Extreme Scenarios:
DR program pricing should be designed in accordance with deviations in the worst-case scenarios relative to average conditions. This will 
provide stronger economic incentives for loads to shift or reduce consumption when it is most beneficial to the system.

• Adoption of IGDT for Broader Uncertainty Modeling:
Given the effectiveness of IGDT in addressing uncertainties, it is suggested to expand its application to model uncertainties in wind, load, 
and grid stress, replacing conventional scenario-based approaches for more robust decision-making.

• CVR in Extended Distribution Networks:
In this study, CVR was implemented in a small-scale distribution network where voltage drop was not a critical issue. Future investigations 
should apply CVR to extended radial networks, where voltage regulation poses a greater challenge, potentially revealing additional opera-
tional complexities.
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