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Abstract
Cancer is a major global health concern and one of the leading causes of death worldwide. As such, the study of cancer treat-
ment and control has become an essential area of research in biomedical engineering. One critical aspect of cancer treatment is 
the prevention of cancer cell proliferation. This article proposes a novel approach in a cancer model with zero initial conditions 
once and another with random initial conditions by a Model Predictive Controller (MPC) developed by Reinforcement Learning. 
Models are treated by 3 different treatment methods including chemotherapy, anti-angiogenic and the combination of both treat-
ment methods is used to evaluate the effectiveness and reduction of the number of cancer cells and the improvement of disease 
outcomes. Our results show that although chemotherapy is necessary to weaken cancer cells, the combination of both treatment 
methods reduces the number of cancer cells by approximately 65%, and this shows the effectiveness of the combination of two 
treatment methods with the help of a Model Predictive Controller (MPC) developed by Reinforcement Learning by reducing the 
number of tumor cells in the targeted location.
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Glossary
Anti-Angiogenic Drug: A drug or substance that keeps new blood 
vessels from forming
Model predictive control (MPC): An optimal control technique 
in which the calculated control actions minimize a cost function 
for a constrained dynamical system over a finite, receding, horizon
Chemotherapy: A drug treatment that uses powerful chemicals to 

kill fast-growing cells in your body
Cancer: A disease of the body's cells
Reinforcement learning (RL): A Machine Learning (ML) 
technique that trains software to make decisions to achieve the 
most optimal results
Anti-Angiogenic Therapy: It is a treatment method that prevents 
the growth of new blood vessels

1.  Introduction
Cancer is one of the most pressing health challenges of our time. It is 
the second leading cause of death worldwide, with millions of new 
cases diagnosed every year. Despite significant advances in cancer 
treatment and research, much remains to be done to find effective 
treatments [1]. Several types of cancer treatment methods exist, 

including surgery, immunotherapy, radiotherapy, chemotherapy, 
and others. Surgery is often the most effective treatment for 
localized tumors in the early stages, as it can remove the tumor 
completely. However, it cannot be used in cases of metastasis, and 
there is also a risk of damage to adjacent tissues [2]. Methods such 
as radiotherapy and chemotherapy are therapeutic methods based 
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on targeted molecular therapy. Chemotherapy is the most common 
cancer treatment method and, in some cases, the only treatment 
available [2,3]. 
In Chemotherapy and Radiotherapy: 
1.  Cancer cells tend to grow rapidly, and chemotherapy drugs also 
work based on the mechanism of rapidly destroying growing cells, 
and since these drugs move throughout the body, they can also 
affect normal and healthy cells that are growing rapidly. Therefore, 
damage to healthy cells is the main side effect of chemotherapy 
and radiotherapy. 
2. Cancer cells change shape to survive during chemotherapy 
treatment, so chemotherapy is often stopped alone [1].

In recent years, a new type of immunotherapy has emerged that 
targets the blood vessels that supply tumours with nutrients and 
oxygen. This therapy is known as anti-angiogenic therapy and has 
shown great promise in the fight against cancer. Anti-angiogenic 
therapy is a form of molecular targeted therapy that drugs prevent 
the formation of new blood vessels to feed the tumour and also 
prevent tumour growth to a critical level [4-7]. Compared to other 
treatments, one of the main advantages of anti-angiogenic therapy 
is that tumor cells do not become resistant to anti- angiogenic 
drugs. Also, anti-angiogenic drugs have less side effects on patients 
due to their non-toxicity [1]. However, it is important to note that 
anti-angiogenic therapy does not remove the entire tumor but only 
stops its growth and keeps it at the initial stage. Therefore, this 
method is usually used in combination with conventional methods 
to remove the entire tumor [7,8]. Among other cancer treatment 
methods in the last few decades, we can mention immunotherapy, 
which has become an important part of treating some types of 
cancer. This treatment uses the body's immune system to treat 
cancer with fewer side effects than targeted molecular treatments, 
such as chemotherapy [9,10]. However, despite the many available 
treatment methods and the disadvantages of each method, 
combination therapy as an optimal treatment method is still an 
open issue.

There are various mathematical models to investigate the interaction 
between tumor and immune system, for example, Kuznetsov et al., 
de Vladar & González, Stepanova's classic article and Hahn Feldt's 
dynamic tumor growth model [2,11-13]. In an article published in 
1999, a simple system with a few ordinary differential equations 
was presented by Hahn Feldt et al., which described the growth of 
tumor cell numbers in the presence of an angiogenesis inhibitor 
as a treatment [13]. With the help of this model and selection of 
inputs, the interaction between tumor growth and immune system 
activity during cancer development is described. This model was 
then modified in articles in 2005, 2011 and 2012 [14-16]. One of the 
key findings of this model is that for small volumes of cancer, the 
immune system can effectively control cancer growth. However, 
for larger cancer volumes, cancer dynamics can suppress immune 
dynamics. This highlights the importance of combining different 

treatment methods to achieve optimal results.

The use of controllers in cancer treatment is common. Among the 
controllers, the Multiple Model Predictive Controller (MMPC) 
was used in a 2017 article to determine the optimal treatment plan 
for a combination of chemotherapy and immunotherapy in the 
modified Stepanova model [17]. The results showed that the use 
of MMPC led to a decrease in tumor volume and drug dosage, 
making it an efficient strategy. In the article, which was published 
in 2020, unlike the rest of the articles that used the optimal control 
strategy, a positive T-S phase controller was proposed for the 
combined treatment of cancer under combined immunotherapy 
and chemotherapy, and it has been found that the volume of tumor 
cells and the doses of drugs used have been reduced to a minimum 
[18]. These findings demonstrate the potential of using controllers 
in cancer treatment to optimize treatment plans and improve 
patient outcomes.

Cancer treatment has been challenging due to the complex and 
dynamic nature of the human body and the cancer system. The 
constantly changing environment and the activity of cancer cells 
make it difficult to develop effective treatments. Despite the 
numerous treatments and methods available, cancer has not been 
completely eliminated, and at best, its size has been fixed or reduced. 
This is due to uncertainties, disturbances, and unknown factors 
that have not been considered in the treatment process. To address 
this challenge, we used two treatment methods, chemotherapy 
and anti-angiogenesis, as a branch of immunotherapy, and then 
the combination of each method as cancer treatment methods. We 
propose a new approach that utilizes reinforcement learning (RL) 
to develop a predictive controller for determining the drug dosage 
amount that can be most effective at any moment. 

RL is a learning technique that enables an agent to learn through 
interaction with the environment and determine the best action 
to take in any situation to achieve optimal results. Therefore, the 
uncertainty factor is eliminated by this method. We have developed 
a model predictive controller with the concept of reinforcement 
learning to determine the dosage amount of the drug that can be 
most effective at any moment according to the unstable conditions 
of the system. Also, MPC is proposed to achieve this goal, which 
can be used for both immunotherapy and chemotherapy. The 
efficiency of the method is shown through simulation. As shown 
here, these results will help guide the development of combination 
therapies. In a general view, the research method is shown in 
Figure 1. The rest of this paper is organized as follows: Section 
2 provides a description of the model and the control problem. In 
Section 3, a controller is developed based on the model predictive 
control scheme with the concept of reinforcement learning. The 
simulation results and discussion are presented in section 4. 
Finally, conclusions are presented in Section 5.
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Figure 1: The Research Method

2. Materials and Methods
In this part, the system model is explained and then we examine 
the problem of the controller.

2.1.  Model of Tumor Dynamic Growth
We consider the dynamic model of tumor growth under anti-
angiogenic therapy first developed in 1999 by Hahnfeldt et al 
[13]. The developed nonlinear dynamic model is presented [15]. 
By adding integrated administrated inhibitor as a new term to the 
model and assuming that the clearance rate of the administrated 
inhibitor is known, the final and simpler dynamic model of tumor 
growth under angiogenesis inhibitor can be described as follows 
[6,14,16,19].

The endothelium is a single layer of squamous endothelial cells 
that line the interior surface of blood vessels and lymphatic vessels. 
The model parameters values are presented in Table 1.The endothelium is a single layer of squamous endothelial cells that line the interior surface of blood

vessels and lymphatic vessels. The model parameters values are presented in Table 1.

Parameter Value Definition Dimension

δ 0.1921 Tumor growth rate 1/day

δ 02 Spontaneous loss of functional vasculature 1/day

δ 1.33 clearance rate of inhibitor 1/day

b 5.85 stimulatory effect 1/day

d 0.0873 inhibition effect of the tumor 1/mm2.day

e 0.66 drug killing parameter kg/mg.day

Table 1: Parameters Value of Dynamic System [19]

Since this model considers the growth and reduction of tumor volume with the effect of anti-angiogenic 

drugs, it is more widely used [19]. The model parameters definitions are presented in Table 2.

Parameter Definition Dimension

𝑧𝑧1 Tumor volume(𝑡𝑡) mm3

𝑧𝑧2 Endothelial volume(𝑡𝑡) mm3

𝑧𝑧3 Concentration of an administrated inhibitor(𝑡𝑡) mg/kg

ℎ(𝑡𝑡) The concentration of an administrated inhibitor mg/kg

𝑤𝑤(𝑡𝑡) Administrated inhibitor rate mg/kg/day

z Tumor cells1 106 cells

z Immune competent density2 Non-dimensional

Table 2: The Model Parameters Definitions [19]
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Table 2: The Model Parameters Definitions [19]

Parameter Value Definition Dimension
δ1 0.192 Tumor growth rate 1/day
δ2 0 Spontaneous loss of functional vasculature 1/day
δ3 1.3 clearance rate of inhibitor 1/day
b 5.85 stimulatory effect 1/day
d 0.0873 inhibition effect of the tumor 1/mm2.day
e 0.66 drug killing parameter kg/mg.day

Table 1: Parameters Value of Dynamic System [19]

Since this model considers the growth and reduction of tumor volume with the effect of anti-angiogenic drugs, it is more widely used 
[19]. The model parameters definitions are presented in Table 2.
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Parameter Definition Dimension

𝑧1(𝑡) Tumor volume mm3

𝑧2(𝑡) Endothelial volume mm3

𝑧3(𝑡) Concentration of an administrated inhibitor mg/kg

ℎ(𝑡) The concentration of an administrated inhibitor mg/kg

𝑤(𝑡) Administrated inhibitor rate mg/kg/day

z1 Tumor cells 106 cells
z2 Immune competent density Non-dimensional

Table 2: The Model Parameters Definitions [19]

Figure 2:  MPC Base Diagram [21]

2.2.  Controller Implementation Problem
The main goal of anti-cancer drugs is to reduce tumor cells, but at 
the same time, it has destructive effects on the body Therefore, it 
is necessary to design an MPC controller based on RL to combine 
treatment methods, so that RL can modify the drug dose to have 
the most optimal effect on MPC performance. However, we will 
achieve the best dose of drug injection for less damage to the body 
and also to speed up the healing process.

2.3.  Controller Design
In this section, the goal is to implement a controller in such a 
way that it can correct its performance in the most optimal way 
according to the existing conditions at any moment. The most 
important benefit of this controller compared to the rest of them 
is that it can deal with the limitations directly and effectively [20]. 
The way the MPC works is that it can predict the next output of 
the control system using the inputs and outputs from the previous 
process and thus provide a real-time solution to the problem. The 
MPC base algorithm is shown in Figure 2 as described [21].

2.4.  Model Predictive Controller
As mentioned, MPC predicts the output according to the input 
and previous output of the process and its goal is to minimize the 
difference between the predicted path and the desired path. MPC 
performs this action with a series of calculations and execution on 
control actions and placing the predicted path under the constraints. 
An important step to design MPC is to set an objective function, 
which is defined as follows:

The limitations of this system are as follows:
By definition of the chemotherapy and anti-angiogenic agents, 

the following inequalities are obtained if the maximum dose rates 
become normalize to 1:

The tumour volume and the immune-competent cell density can 
be positive or zero. 

The Model Predictive Controller values are presented in Table 3 
and definitions are presented in Table 4.
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Parameter Value Dimension Definition

z -1 106 Tumor cellscells

z -2 Non-Dimensional Immune Competent dDensity

𝛾𝛾 0.37451 1/day Penalties

Table 3: Parameters Value of MPC [17]

Parameter Definition

𝑧𝑧2𝑟𝑟 Desired output(𝑘𝑘 + 𝑗𝑗)
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Parameter Value Dimension Definition
z1 - 106 cells Tumor cells
z2 - Non-Dimensional Immune Competent dDensity

𝛾 0.37451 1/day Penalties

Table 3: Parameters Value of MPC [17]

Table 4: The Model Parameters Definitions of MPC [17]

Parameter Definition

𝑧2𝑟(𝑘 + 𝑗) Desired output

𝑧̂2(𝑘 + 𝑗) The estimated output of the system at instant (𝑘 + 𝑗)
𝑁𝑤 The prediction horizon

𝑃 Weighting matrices on output errors and is defined ∶ 𝑃 = 𝑑𝑖𝑎𝑔( 𝛾𝑧 𝛾𝑧 ) , 𝑃 ∈ ℝ2∗2
𝑅 Weighting matrices on control signals and is defined∶ 𝑅 = 𝑑𝑖𝑎𝑔(𝛿𝑤 𝛿𝑤 ) , 𝑅 ∈ ℝ2∗2
𝛾𝑧1 Penalties on errors in tumor cells

𝛾𝑧2 Penalties on immune competent density

𝛿𝑤1 Penalties on 𝑤1

𝛿𝑤2 Penalties on 𝑤2

2.5.  Theory and Calculation
2.5.1. Reinforcement Learning-Based Model Predictive 
Controller Design
Designing an optimal model-based controller for nonlinear systems 
is one of the most challenging problems in the control theory. In 
this section, a Reinforcement Learning-based Model Predictive 
controller is developed for cancer therapy. Reinforcement learning 
is one of the machine learning algorithms in which learning is done 
through the data received from the environment or interaction 
with the environment. In reinforcement learning, the agent knows 
the current state (St) and then the agent performs an action in 
the current state (At) and enters the new environment (St+1). 
For each action that the agent performs, the state of the system 
changes and then receives a positive reward signal (reward) or 

a negative reward (punishment) from the environment (Rt+1). 
After that, the agent processes the received reward. In the new 
state, the agent performs a new action based on the processing 
of the previous reward. Therefore, with every action it takes, the 
Artificial Intelligence (AI) learns to do what will get the most 
reward or the least punishment in every situation. The function 
in which the agent chooses a specific action in a specific situation 
is called policy. The special advantage of reinforcement learning 
is the control of systems whose dynamics we do not have. For 
example, an environment that is unstable or disturbed. The agent 
aims to obtain the strategy that maximizes the total received 
reward. Figure 3 presents a schematic view of the RL problem. 
The principles of reinforcement learning are shown as a flowchart 
in Figure 4.

Figure 3: Reinforcement Learning Schematic
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Figure 3: Reinforcement Learning Schematic

Figure 4: The Principles of Reinforcement Learning

The reinforcement learning framework is formalized according to the Markov Decision Process (MDP). 

Most reinforcement learning problems can be expressed in the form of a Markov Decision Process. In 

this process, states change and there are several states, and with each action, the environment changes

from one state to another. In MDP, we calculate the optimal policy analytically based on our actions and

Figure 4: The Principles of Reinforcement Learning

The reinforcement learning framework is formalized according to 
the Markov Decision Process (MDP). Most reinforcement learning 
problems can be expressed in the form of a Markov Decision 
Process. In this process, states change and there are several states, 
and with each action, the environment changes from one state 
to another. In MDP, we calculate the optimal policy analytically 

based on our actions and states. The property of MDP is that the 
next state and the reward only depend on the previous state and 
the performed action, and the next state is not dependent on the 
history. In this process, by applying restrictions, actions are always 
chosen to take us to the permitted and available states. The Markov 
Decision Process is shown in Figure 5.

Figure 5: The Markov Decision Process 

MDP is defined as (𝑆. 𝐴. 𝑃. 𝑅) as the description of the RL 
mathematical model system. It is necessary to mention that the 
transition probability matrix is not required in the model-free 
reinforcement learning algorithm environment and 𝑄 is learned 
to approximate 𝑄∗. The MDP parameters and definitions are 
presented in Table 5.

The action-value estimates are updated as follows, where by 
observing a transition (𝑠. 𝑎. 𝑟. 𝑠́): 

To reach an optimal policy, random actions follow the 𝜀−greedy 
method, ε is a small positive number and decreases over time, 
and random actions are performed with this probability. In simple 
terms, the smaller the value of ε, the less random actions will be 
taken to reach the optimal policy. Therefore, with this policy, there 
is an interaction between exploration and exploitation. The 𝜀−
greedy policy is shown in Figure 6.
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Figure 6: Choose the Action Using ε−Greedy Policy

Parameter Definition

𝑆𝑆 A finite set of states

𝐴𝐴 A finite set of actions

𝑠𝑠 Current state (𝑠𝑠 ∈ 𝑆𝑆)

𝑠́𝑠 New state or environment (𝑠́𝑠 ∈ 𝑆𝑆)

𝑎𝑎 An action (𝑎𝑎 ∈ 𝐴𝐴) takes a state 𝑠𝑠 to 𝑠́𝑠

𝑃𝑃(𝑠𝑠. 𝑎𝑎. 𝑠́𝑠) The probability of transition to 𝑠́𝑠 by taking an action 𝑎𝑎 in a state 𝑠𝑠

𝑃𝑃: 𝑆𝑆 × 𝐴𝐴 × 𝑆𝑆 → [0.1] A state transition probability matrix
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𝑧𝑑 The desired tumor volume in 𝑚𝑚3
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𝑠(𝑘) Each state at the time step 𝑘
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2.6.  Method of Operation
According to the previous two sections, the method of operation 
is as follows: Reinforcement learning corrects the dosage based 
on MPC performance. It means that the controller is running a 
platform and RL receives and corrects a function from it; so, it 
can be said that we put another model under a double corrector on 

MPC performance. Therefore, MPC determines the drug dose and 
RL, as a corrector, has its effect on the controller and determines 
the final amount of the optimal dose. The performance of the 
designed system components and their interaction with each other 
are shown in Figure 7.

The 𝜀𝜀−greedy policy parameters and definitions are presented in Table 6.

Table 6: The ε−Greedy Policy Parameters and Definitions
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Figure 7: The performance of the Designed System Components and their Interaction with each other

3.Results

Parameter Definition

𝑧𝑧 The desired tumor volume in 𝑚𝑚𝑚𝑚𝑑𝑑
3

𝑇𝑇 Sampling time

𝑘𝑘 Time step

𝑟𝑟(𝑘𝑘 + 1) The reward value

𝑠𝑠(𝑘𝑘) Each state at the time step 𝑘𝑘

Figure 7: The performance of the Designed System Components and their Interaction with each other

Figure 8: The Number of Cells without Applying a Constraint by RL to the Controller

3. Results
The values related to parameters and initial conditions used in 
simulations and modeling are presented in Table 3 and Table 1 
in order to reach the best drug dosage in unstable conditions. The 
experiments and simulations described in this section relied on 
MATLAB and were developed and designed by RL-based MPC 
to Control the tumor system by immune and anti-angiogenesis. 
Based on the weighting matrixes, different time steps and different 
sample time, strategies were devised for each therapy. In figures 
Q represents chemotherapy, P represents anti-angiogenesis 
immunotherapy and P+Q represents mixed-therapy. Figure 8. 

shows that 50% of the cells are subjected to immunotherapy and the 
remaining 50% are subjected to chemotherapy, and no restrictions 
applied for Reinforcement Learning in the controller. The results 
indicate that in the chemotherapy treatment method, the slope 
of decreasing the number of tumor cells is much faster than the 
immunotherapy treatment method, and in the combined treatment 
method, chemotherapy has a greater effect than immunotherapy 
and the tumor cell reduction graph is more similar to chemotherapy 
graph. The number of tumor cells in both treatment methods and 
the combined method have a downward trend.
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Figure 9 shows the results of the simulation by using RL and 
without considering the initial conditions in a period of 30 days 
and with time steps N=2, N=5, N=10. Also, the optimal control 
sequence corresponding to each time step is also shown. According 
to the graph of the percentage of the remaining cells after 30 days 
and also according to the optimal control sequence, it can be seen 
that the maximum optimization occurs in time step N=2 And the 
optimization in this time step is always upward and the controller 

in each moment has more effective behavior than the previous 
moment and the total optimization rate is almost 80%. After that, 
the optimization in step N=10 is better than N=5, because in N=10, 
although the optimality of the controller has successive ascending 
and descending behaviors in different stages, the total optimality 
is equal to 70%. In N=5, although at the beginning of the process, 
the optimization was downward and after step-2, it has had always 
an upward behavior, overall the optimization rate was only 35%.

optimization rate is almost 80%. After that, the optimization in step N=10 is better than N=5, because in 

N=10, although the optimality of the controller has successive ascending and descending behaviors in

different stages, the total optimality is equal to 70%. In N=5, although at the beginning of the process, the

optimization was downward and after step-2, it has had always an upward behavior, overall the 

optimization rate was only 35%.

Figure 9: The Number of Cells and Optimal Control Sequence by using RL and without the Initial

Conditions in Different Time Steps

Figure 10 shows the results of the simulation by using RL and with considering the random initial

conditions in a period of 30 days and with time steps N=2, N=5, N=10. Also, the optimal control

sequence corresponding to each time step is also shown. According to the graph of the percentage of 

remaining cells after 30 days and also according to the optimal control sequence, it can be seen that the 

maximum optimization occurs in the time step N=5, because the optimization process is always upward

and although it is slower at the beginning, at the end, the optimal slope will be steeper and the optimal 

percentage is equal to 90%. After that, the optimization in the time step N=2 is better than N=10,

because the optimization in this time step is always upward and the controller behaves more effectively at

each moment than the previous moment, and the optimality percentage is almost equal to 80%. However,

in N=10, despite the sharp end slope, the optimality of the controller along the path has successive

Figure 9:  The Number of Cells and Optimal Control Sequence by using RL and without the Initial Conditions in Different Time Steps

Figure 10 shows the results of the simulation by using RL and with 
considering the random initial conditions in a period of 30 days 
and with time steps N=2, N=5, N=10. Also, the optimal control 
sequence corresponding to each time step is also shown. According 
to the graph of the percentage of remaining cells after 30 days and 
also according to the optimal control sequence, it can be seen that 
the maximum optimization occurs in the time step N=5, because 
the optimization process is always upward and although it is slower 
at the beginning, at the end, the optimal slope will be steeper and 

the optimal percentage is equal to 90%. After that, the optimization 
in the time step N=2 is better than N=10, because the optimization 
in this time step is always upward and the controller behaves more 
effectively at each moment than the previous moment, and the 
optimality percentage is almost equal to 80%.  However, in N=10, 
despite the sharp end slope, the optimality of the controller along 
the path has successive ascending and descending behaviors in 
different stages, and the optimality rate is 70%.

Figure 10: The Number of Cells and Optimal Control Sequence by using RL and with Random Initial Conditions in Different Time 
Steps
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4. Discussion and Conclusion
According to the results of article, we found that the chemotherapy 
by using reinforcement learning alone is effective in cancer treatment 
[19]. Also, according to the results of article, it was observed that 
applying both chemotherapy and immunotherapy methods by 
using a Multiple Model Predictive Controller (MMPC) is more 
effective than using only one treatment method. In this article as 
the simulation results in the previous section show, in general, 
with the help of the system model and using a model predictive 
control developed by RL, it can be seen that chemotherapy alone 
can decrease the number of cells and tumor growth in the long 
term and take the system from a malignant state to a benign state 
[17]. Although there is a downward trend in the number of cells 
in the end, chemotherapy does not decrease the number of cells 
at the beginning and its effectiveness is determined in the long 
term. Also, although at the beginning of the work, the reduction of 
the number of cells is evident by the immunotherapy method, in 
general, its downward course is very slow. What distinguishes this 
article from previous and similar works and gives it superiority is 
that: 
1. The results of both treatment methods have been examined 
individually and in combination. 
2. A model predictive controller developed by RL has been used to 
apply a specific and required dose of medicine for treatment. 
3. The optimality process of the developed controller in each time 
step has also been investigated.

Based on Hahnfeldt 's mathematical model which is in, we 
applied a model predictive controller developed by reinforcement 
learning to observe the effectiveness of the combination of two 
treatment methods, namely chemotherapy and anti-angiogenesis 
immunotherapy [13]. Since the system is constantly changing, 
the controller predicts the drug dose, then reinforcement learning 
examines that dose. If the predicted dose is the most optimal 
(highest reward), the drug is delivered to the patient, but if the 
predicted dose is not optimal, the controller will predict a new 
dose to be injected to be checked again by reinforcement learning. 
This process continues according to the time steps until the best 
drug dose is determined for the effect and then it is applied to the 
system. According to the results of the simulation, considering all 
the different conditions and different time steps, the combination 
of the two methods reduces the number of cells by almost 65%, 
and this shows the effectiveness of the combination of the two 
treatment methods with the help of a developed model Predictive 
controller by RL. Also, when there are no initial conditions, the 
developed controller has optimality in the time step N=2, and 
when random initial conditions are applied, it has optimality in 
the time step N=5. Because in these time stages and in almost 
every stage, the controller has a more effective behavior compared 
to the previous stage to achieve the most effective dose, and the 
percentage of optimality is higher than the rest of the cases [22].
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