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Abstract
Background: Since the COVID-19 pandemic, research of aerosols and their importance for the transmission of SARS-
CoV-2 as well as their role in super-spreading events has intensified. The present study compared healthy controls, 
outpatients with mild SARS-CoV-2 disease (outpatient group) and severely ill hospitalized patients (inpatient group) to 
investigate the connection between aerosol production and disease severity.

Methods: For this purpose, the exhaled aerosol concentration of 234 adults (53 outpatients, 61 inpatients and 120 
controls) was analyzed in a prospective clinical trial. The study consisted of a clinical examination, spirometry and aerosol 
measurement using a spectrometer (Resp-Aer-Meter, Palas GmbH, Karlsruhe, Germany).

Results: The outpatients had a milder clinical course, fewer co-morbidities, and a lower age than the inpatient group. The 
aerosol concentration of the groups differed significantly (p<0.001) from each other (median control 285.5 [14 - 850] n/l; 
outpatient group 413 [18 - 7355] n/l and inpatient group 1353 [46 – 27779] n/l). The increase of aerosols was primarily 
observed in the size range from 0.1 to 0.52 µm. Lung function differed significantly (p < 0.001) between the groups (median 
FEV1; control group 87.6 [57.1 - 149.3], outpatient group 85.3 [50.3 - 117.6] % and inpatient group 59.7 [16.0 – 112.3] 
%).

In this study, two super-emitters (3.8%) with very high aerosol exhalation (> 5000 n/l) could be identified among outpatients, 
whereas 15.6% of the inpatients were super-emitters.

Conclusion: Aerosol measurement using the Resp-Aer-Meter is not suitable for detecting SARS-CoV-2 infections. However, 
it could provide valuable information about super-emitters and may be used to support prevention and control measures 
in the community.
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1. Introduction
Respiratory tract infections caused by corona viruses have 
been known for many years. The global extent of the COVID 
19 pandemic far exceeds the outbreaks of the severe acute 
respiratory syndrome coronavirus type 1 (SARS-CoV-1) or the 
Middle East respiratory syndrome coronavirus (MERS-CoV) 
in 2002 and 2012, respectively [1]. SARS-CoV-2 uses a similar 
mechanism to SARS-CoV-1 for its replication in the respiratory 
tract. The most important element is the binding of the viral 
spike protein to the receptor of the angiotensin-converting 
enzyme 2 (ACE2) [2,3]. After entry and replication in cells, 

the infection can manifest clinically as COVID-19 [4,5]. Fever, 
cough, fatigue, impaired smell, and dyspnea were identified in 
meta-analyses as the most common symptoms in adult patients 
[6,7], whereas asymptomatic cases were described in around 16 
to 22% of diagnosed infections [8,9]. However, the symptom 
pattern differs between hospitalized and non-hospitalized 
patients. While patients in outpatient settings are characterized 
primarily by mild illness with fever, myalgias, headaches and 
impaired smell [10,11], hospitalized patients more frequently 
exhibit dyspnea, cough and lung failure [12]. The severity 
and hospitalization rate are depended on underlying illnesses 
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(obesity, diabetes mellitus, cardiovascular, respiratory and renal 
diseases), smoking status, age and gender of the patient, but also 
the virus variant present [13-15].

At the beginning of the pandemic, knowledge on the transmission 
route of SARS-CoV-2 was largely based on case observations 
and contact tracing [16,17]. Initially, the focus was on droplet 
infections through close contact and smear infections, which 
lead to recommended protective measures such as physical 
distance rules and disinfection measures [18,19]. However, the 
relationship to SARS-CoV-1 and MERS suggested that SARS-
CoV-2 could also be transmitted via aerosols [20]. This was 
initially discussed primarily in the context of aerosol-generating 
medical interventions (endotracheal intubation, bronchoscopy), 
but also respiratory maneuvers such as singing, speaking, 
screaming, or coughing [18,21]. Further evidence was provided 
by the observations of superspreading events and in particular 
the detection of SARS-CoV-2 nucleic acids and intact virus 
in samples and cultures from the ambient air around infected 
patients [22-25].

Aerosols are defined as a mixture of solid and/or liquid particles 
with a gas, usually air [26]. Two mechanisms for the formation of 
aerosols in the human respiratory tract are described [26]. Larger 
aerosols are created by shedding as turbulent air currents move 
across the liquid film of the airway surface. Smaller aerosols, 
and thus most of the exhaled aerosols, are generated in the 
small bronchi [27]. These aerosols arise from the fragmentation 
of bubbles and fluid bridges between the bronchial walls, that 
expand and contract with respirations. With each breathing 
cycle, aerosols are continuously generated, so that every person 
produces a certain base rate of particles while breathing [28].

How aerosol production changes in the setting of respiratory 
tract infections have been researched for other pathogens, but 
with regard to SARS-CoV-2 it is still in its early stages. In the 
work of Edwards et al [29] and Gutmann et al. [30,31], exhaled 
aerosols of controls and SARS-CoV-2 positive patients were 
quantified, showing an increase of exhaled particles in SARS-
CoV-2 positive patients. To better understand the transmission of 
SARS-CoV-2 via aerosols, this study compared exhaled aerosols 
in inpatients and outpatients, correlated aerosol excretion with 
disease severity and analyzed the number of superspreaders in 
both groups.

2. Methods
2.1. Study Design
This was a single-center prospective, clinical trial with 
exploratory analysis of exhaled aerosols in SARS-CoV-negative 
controls, SARS-CoV-2-positive outpatients, and inpatients. The 

measurements of exhaled aerosols in outpatients were performed 
from April to December 2021 in Frankfurt am Main metropolitan 
area. An ambulatory team conducted the measurements in the 
home environment of the isolated test subjects. A total of 61 
inpatients, 53 outpatients and 120 controls met the inclusion 
criteria (listed below) and were thus included in further analysis.

Measurements were performed after detailed written and 
verbal information about the purpose and risks of the planned 
examination was provided and written consent was obtained. 
Before the initiation of the study, approval was granted by the 
Frankfurt Ethics Committee and the study was registered with 
ClinicalTrials.gov (identification number NCT04739020). The 
study was sponsored by an independent grant and equipment of 
the Palas GmbH, Karlsruhe, Germany.

The following inclusion and exclusion criteria existed:

Inclusion criteria for healthy adults:
• Age: 18 – 99 years
• Patients with a current, negative PCR test for SARS-CoV-2
• Ability to understand the study
• Written consent

Inclusion criteria for patients with SARS-CoV-2 infection:
• Age: 18 – 99 years
• Patients with a current, positive PCR test for SARS-CoV-2 (0 
– 3 days old)
• Ability to understand the study
• Written consent

Exclusion criteria for all patients were:
• Inability to perform spirometry
• Inability to carry out a correct measurement of aerosols
• Inability to understand the scope of the study

After informed consent was obtained, history was taken with 
documentation of demographic data, clinical symptoms, onset 
of symptoms and PCR test results (including cycle threshold (Ct 
value), if available). The exhaled aerosols were measured using 
the Resp-Aer-Meter (Palas GmbH, Karlsruhe, Germany) and the 
lung function was measured using a hand-held spirometer.

A detailed description of the used method for exhaled aerosol 
measurement can be found in our previous work [30,31] and 
is outlined in the supplement. Figure 1 of the supplement is 
showing the Resp-Aer-Meter with connected mouthpiece and 
HEPA filter, and Figure 2 a-c the sequence of a measurement 
based on the resulting curve.
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2.2. Spirometry
Spirometry was carried out in accordance with the criteria of 
the American Thoracic Society and the European Respiratory 
Society using a hand-held spirometer (Asthma Monitor AM, 
VIASYS Healthcare GmbH, Höchberg, Germany). The peak 
flow (PEF) and the one-second capacity (FEV1) were measured. 
The FEV1 (%) predicted was determined for each patient.

2.3. Statistical Methods
GraphPad Prism 5.01 (GraphPad Software, Inc.) and IBM SPSS 

Statistics 29.0.0.0 (IBM Corporation) were used for statistical 
analysis. The median and the range were used to represent 
numerical data. Nominal data were reported as percentages.

The Kruskal-Wallis test followed by Dunn’s test as a post hoc 
test were used to calculate statistically significant differences 
between numerical data when comparing all three groups. For 
nominal data, the chi-square test was used. To compare two 
groups, the Mann-Whitney U test was used for numerical data 
and the Fisher exact test for nominal data. Results with a p-value 
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≤ 0.05 were considered statistically significant and larger values 
were considered not significant (n.s.). Unless otherwise stated, 
the p-values in the tables refer to the comparison of all groups. 
The p values within the figures are abbreviated with asterisks as 
follows: p ≤ 0.05

(*); p ≤ 0.01 (**); p ≤ 0.001 (***).

3. Results
3.1. Demographics and Comorbidities
A total of 234 adults were included in this study. The 
corresponding group sizes and characteristics can be found 
in Table 1. The groups differed significantly in their age and 
body mass index (BMI), but not in their gender distribution or 
smoking status. There were more men in the hospitalized group, 
but without statistical significance.

 21 

Tables 446 
 447 

Table   1 Clinical characteristics 
 Controls 

(n = 120) 
Outpatients 

(n = 53) 
Inpatients 

(n = 61) 
p-Value 

Age [Years] 
Median 
range 

 
42 

18 – 80 

 
34 

19 – 84 

 
52 

24 – 87 
< 0.001 

Sex 
female 
male 

 
52 (43.3 %) 
68 (56.7 %) 

 
24 (45.3 %) 
29 (54.7 %) 

 
18 (29.5 %) 
43 (70.5 %) 

0.138 

BMI [kg/m2] 
Median 
Range 

 
26.1 

18.9 – 44.4 

 
24.5 

18.0 – 38.0 

 
28.2 

16.6 – 44.4 
0.004 

Smoking status 
Nonsmoker 
Smoker 

 
92 (76.7 %) 
28 (23.3 %) 

 
39 (73.6 %) 
14 (26.4 %) 

 
 48 (78.7 %) 
13 (21.3 %) 

0.813 

 448 
 449 
 450 
 451 
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Table 2 Comorbidities 453 
 454 

Pre-existing conditions Controls 
(n = 120) 

Outpatients 
(n = 53) 

Inpatients 
(n = 61) 

p-Value 

Obesity 23 (2.5 %) 6 (11.3 %) 21 (34.4 %) 0,008 

Hypertension 8 (6.7 %) 8 (15.1 %) 27 (44.3 %) < 0,001 

Diabetes 2 (1.7 %) 1 (1.9 %) 14 (23.0 %) < 0,001 

Respiratory 16 (13.3 %) 10 (18.9 %) 13 (21.3 %) 0,351 

Cardiac 0 (0 %) 3 (5.7 %) 18 (29.5 %) < 0,001 

Renal 0 (0 %) 3 (5.7 %) 20 (32.8 %) < 0,001 

 455 
  456 
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Table 1: Clinical Characteristics

Table 2 lists the most common comorbidities in the individual 
groups in absolute and relative incidence. Overall, patients 
with SARS-CoV-2 infection were more likely to have previous 
illnesses, with these being most common in the inpatient group. 
There were significant differences between all groups in all 

comorbidities, except for previous respiratory illnesses.

Asthma and pollen allergies predominated in the controls and 
outpatients.

Table 2: Comorbidities

3.2. Clinical Manifestation
The clinical presentation is listed in Table 3 with the individual 
symptoms in the respective groups displayed as absolute and 
relative occurrence. For this analysis, only the outpatient and 

inpatient groups were compared, as a separate comparison with 
the asymptomatic control group would not bring any added 
value and would distort the evaluation.
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Table 3 Clinical presentation 457 
 458 

 

Symptoms 
Controls 
(n = 120) 

Outpatients 
(n = 53) 

Inpatients 
(n = 61) 

p-value 
(outpatients 

vs. inpatients) 

Fever 0 (0 %) 3 (5.7 %) 17 (27.9 %) 0.003 

Cough 4 (3.3 %) 29 (54.7 %) 33 (54.1 %) 1.000 

Dyspnea 1 (0.8 %) 9 (17.0 %) 25 (41.0 %) 0.007 

Change in sense of 
smell and/or taste 

0 (0 %) 18 (34.0 %) 9 (14.8 %) 0.026 

Sore throat 0 (0 %) 10 (18.9 %) 10 (16.4 %) 0.807 

Myalgia and/or ar-
thralgia 

0 (0 %) 5 (9.4 %) 11 (18.0 %) 0.280 

Diarrhea 0 (0 %) 1 (1.9 %) 5 (8.2 %) 0.213 

Nausea and/or vomit-
ing 

0 (0 %) 0 (0 %) 2 (3.3 %) 0.498 

Day X of symptoms 
Median 
Range  

– 
 

6 
1 – 12 

 
8 

1 – 28 

 
0.002 

459 Table 3: Clinical Presentation

At the time of the measurement, the inpatients were almost 
five times more likely to have fever and twice as likely to have 
dyspnea. The outpatients, on the other hand, reported disorders 
of the sense of taste and/or smell twice as much as the inpatient 
group.

In the inpatient group, the examination was carried out 
significantly later (on the median on day 8 of symptoms) and 
covered a significantly larger time frame overall (days 1 - 28) 
compared to the outpatient group(median measurement on day 
6 ; range day 1 – 12).

3.3. Lung Function Testing
When looking at lung function, the FEV1 % predicted and PEF 
of the three groups were compared and shown as boxplots in 
Figure 1. For both measured values, the inpatient group differed 
significantly from the other two groups (control 87.6 (57.1 - 
149.3) %; outpatient group median FEV1 85.3 (50.3 - 117.6) % 
and inpatient Group 59.7 (16.0 - 112.3) %; p < 0.0001. A similar 
distribution was also seen in the PEF measurements (control 464 
[238.0 - 873.0] l/min; outpatient group 404.5 [178.0 – 667.0] l/

min and inpatient group 277.0 [62.0 – 715.0] l/min); p < 0.0001.

3.4. Aerosol Measurement
The exhaled aerosol concentrations of the individual groups are 
shown in Figure 2. The boxplots show a confidence interval of 
95%, data outside of this are presented as individual dots. In 
both SARS-CoV-2-positive groups), the aerosol concentrations 
were significantly increased when compared to controls (control 
group 285.5 [14 - 850] n/l; outpatient group 413 [18 – 7355] n/l 
and inpatient group 1353 n/l [46 - 27779] n /l).

3.5. Size Distribution
The particle sizes were divided into small (0.1 - 0.52 µm) 
and large (0.52 - 5.2 µm) aerosols. This distinction was made 
because although all aerosols can potentially penetrate the entire 
lung, the large aerosols show a preference for the area of the 
extrathoracic airways, while the smaller particles penetrate 
deeper lung fields. The small aerosols accounted for 92.3% of 
the total aerosols measured across all groups; the large aerosols 
only for 7.7% (Fig. 3).
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As shown in Figure 3, the median aerosol concentrations of 
small aerosols are significantly higher (control group 247.1 [0 - 
1026] n/l; outpatient group 350 [17.5 - 7123] n/l; inpatient group 
1126 [46.3 – 27607] n/l) than that of the large aerosols in the 
respective group (control group 17.5 [0 – 597.9] n/l; outpatient 
group 20.9 [0 – 733.3] n/l; inpatient group 114 [0 – 1759] n/l).
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the smallest particles.
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4. Discussion
With the occurrence of the first SARS-CoV-2 infections at the 
end of 2019 and its rapid global spread, the virus became the 
focus of global research. It quickly became clear that, due to the
epidemiological behavior, there must also be airborne 
transmission route in addition to transmission via droplets. 

Aerosols are physiologically generated with each breathing 
cycle by turbulent air currents and opening airways in the 
terminal lung sections, breaking up the pulmonary fluid film 
[26,28,32]. This poses a risk for infected patients to act as so-
called superspreaders, releasing a large number of infectious 
aerosols and thus being responsible for numerous secondary 
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infections [24,33].

The work of Edwards et al. [29] showed increased aerosols in 
SARS-CoV-2-infected primates and detected humans with higher 
aerosol excretion in a healthy experimental group. Gutmann et 
al. [30] were able to demonstrate significantly increased exhaled 
aerosol concentrations in hospitalized patients with a SARS-
CoV-2 infection compared to the control group. The question 
arose as to whether milder illnesses in outpatients are also 
associated with increased aerosol concentrations. In addition, 
looking at subgroups of the studied hospitalized patients, 
Gutmann et al. [30] found a correlation between severity of 
disease and concentration of exhaled particles in the inpatient 
setting. To further investigate this correlation and extend it to 
the outpatient setting, as part of this study, exhaled aerosols 
were measured in outpatients an compared with the data from 
Gutmann et al. [30]. In this comparison, we found an increase in
aerosols in both outpatients and inpatients with SARS-CoV-2 
when compared to healthy controls, with significantly higher 
concentrations in the inpatient group compared to the outpatient 
group, which solidified the correlation of exhaled aerosols and 
severity of illness.

As expected, the inpatients and outpatients differed from each 
other in their age, BMI and all comorbidities. These results 
are not surprising and are consistent with the literature, as 
comorbidities such as obesity, diabetes and cardiovascular 
diseases represent risk factors for a severe course of the disease 
and an increased hospitalization rate [13,34,35]. Accordingly, 
the sicker and older patients are found primarily in the inpatient 
group, while the outpatient group consists predominantly of 
healthier and younger patients. In agreement with our results, 
Vahey et al. [12] found significantly more frequent productive 
cough, dyspnea, and hemoptysis in hospitalized patients as signs 
of an infection of the deep respiratory tract.

When looking at the individual underlying respiratory illnesses, 
however, it is noticeable that the outpatients and controls 
mainly had mild preexisting conditions such as asthma or hay 
fever, while the inpatients had more serious lung illnesses such 
as pneumonia, COPD, pulmonary fibrosis. Accordingly, lung 
function was only impaired in inpatients; no difference compared
to controls could be demonstrated in the outpatients. There are 
only a few comparable studies on lung function testing and 
aerosol measurement during an acute SARS-CoV-2 infection. 
The international recommendations to reduce spirometry to 
ovoid spreading of aerosols also restricted its implementation 
in studies [36]. It was primarily carried out as follow-up care for
COVID-19 survivors. The study by Lund Berven et al. [37] 
performed pulmonary function testing on outpatients aged 12 
to 25 years. They found no difference in FEV1 between those 
infected with SARS-CoV-2 and the control group.

Xi et al. [38] suggested that exhaled aerosols are a kind of 
fingerprint that can be used to detect various structural lung 
diseases. Each disease causes an individual modification of the
pulmonary architecture and thus influences the formation of 
aerosols [38]. Structural changes could lead to stronger turbulent 
flow leading to increased fragmentation of the liquid film that 

coats the airway surface, resulting in more exhaled aerosols. 
However, the composition of the liquid film itself could also 
be changed and in turn influence aerosol production through 
its viscoelasticity and surface tension. For example, diseases 
such as COPD or cystic fibrosis are associated with a different 
composition of the airway fluid film [39]. This principle can 
also be transferred to iatrogenic changes. Edwards et al [29] 
showed that after inhalation of a saline solution, the aerosol 
concentration in the exhaled air decreases due to the increased 
surface tension. The patients in the inpatient group had multiple 
and complex previous illnesses with associated polymedication. 
An isolated consideration of individual comorbidities or the 
influence of medication was not possible in this study, given the 
above-mentioned overlays and the small group sizes. However, 
this should be investigated further in future studies.

Significantly higher exhaled aerosol concentrations compared to 
healthy controls, were detected not only in patients with severe 
illness, but also in mildly ill patients. This observation has been 
described several times by us and other authors [29, 31]. In 
particular, an increase in aerosols in the size range of less than 
0.5 µm was detected in this patient population. The question 
arises to what extent these small aerosols contain intact viruses. 
Some working groups were unable to detect SARS-CoV-2 virus 
material in air samples despite RT-PCR tests [40-42], whereas 
other authors were able to successfully cultivate viable viruses 
from aerosols with a size of 0.25 to 0.5 µm [25,43,44]. This 
confirms the possibility of transmission through small aerosols 
and thus their relevance for containment of the infection and the 
potential for superspreading events [27,43-45].

When looking at superspreading events, epidemiological studies 
have shown that the pareto principle applies to transmission 
of infections. This concept is referred to as the “80:20 rule”. 
Therefore, 80% of secondary infections are typically caused by 
20% of the initially infected individuals. In diseases spread by 
aerosol transmission, the small portion of infected individuals 
that accounts for most secondary infections most likely generates 
more exhaled aerosols. In our study, only two super-emitters 
(3.8%) with very high aerosol excretion (> 5000 n/L) could 
be identified among outpatients. Within the group they were 
responsible for 27.6% of the aerosols. In comparison, in the 
cohort studied by Gutmann et al. [30] 15.6% of inpatients were 
above the limit (>5000 n/L) and generated 64.8% of aerosols.

However, when analyzing the overall distribution of exhaled 
aerosols without taking the cut off of 5000n/L into account, both 
groups have the same proximity to the 80:20 rule (Fig. 4). With 
a ratio of 71:21 in the outpatient group and 68:21 in the inpatient 
group, the ratio was significantly closer to the Pareto principle 
than in the control group (40:20). Edwards et al. [29], on the 
other hand, were also able to determine a ratio of 80:19 in their 
healthy test group, which was not the case here. The results of 
this work indicate that the infection causes a greater increase 
in aerosol excretion in some infected patients. Therefore, 
infection increases the difference between super emitters and 
less excreting patients. Even with a similar severity of illness, an 
infection appears to have a particularly strong influence on the 
pulmonary structure of a small group of people and thus leads to 
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a more pronounced increase in their aerosol
production.

Studies on exhaled aerosols have already been carried out in 
respiratory infections with other pathogens such as rhinovirus, 
Mycobacterium tuberculosis and influenza viruses [46-48]. An
increase in the exhaled aerosol concentration of patients infected 
with these pathogens was found [46 -48]. In addition, aerosols 
with a size of less than one micrometer were mainly detected 
[46,47,49]. The results from different studies with different 
pathogens suggest that the increase in aerosol production is non-
specific for a SARS-CoV-2 infection. Respiratory infections 
appear to influence pulmonary conditions in a similar way, 
leading to an increase in aerosol formation.

This study had some limitations. The results of the Resp-Aer-
Meter are purely quantitative in terms of recording the number 
and size of exhaled aerosols, without allowing any conclusions
about the composition of the aerosols. It does not recognize 
whether components of pathogens are contained in the exhalate 
or whether they are intact and vital. Therefore, the question of 
the infectivity of a patient cannot be answered with the Resp-
Aer-Meter. In addition, there was a gap of at least 24 hours 
between the aerosol measurement and the PCR test and the 
participants were not tested for any other respiratory pathogens 
besides SARS-CoV-2.

5. Conclusion
The present study was the first to compare outpatients with 
mild disease to severely ill inpatients to examine a connection 
between aerosol production and disease severity. As expected, the 
outpatients had a milder clinical condition, fewer comorbidities, 
and a lower age than the inpatient group. The aerosol 
concentration of the groups differed significantly from each 
other, but the outpatient group exhaled lower concentrations than 
the inpatient group. In addition, only the inpatient group had a 
severely compromised lung function. Aerosol measurement was 
not suitable for detecting SARS-CoV-2 infections in outpatient 
settings however, it could provide valuable information about 
super-emitters and could be used to support questions about 
isolation arrangements or duration.
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