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Abstract
The analysis of randomness in time series is crucial for extracting relevant pat- terns from noisy data. Noise can 
obscure underlying dynamics, posing challenges in various research fields such as financial analysis, biomedical signal 
processing, and environmental monitoring. This study proposes a novel method for detecting similar patterns in large-
scale time series datasets. The approach employs a denoising technique based on the Morlet wavelet transform to 
enhance pattern recognition. The similarity-search method leverages Locality Sensitive Hashing in order to detect 
denoised similar patterns embedded within time series. A significant reduction in entropy in the reconstructed data 
reveals hidden patterns that were previously masked by noise. This study avails of entropy as a measure of detection 
accuracy, incorporating a well-known technique from the Conformal Prediction framework. The pre-defined confidence 
level is closely related to the minimum cosine similarity of the detected patterns which exchange high values of mutual 
information as a consequence of the noise removal as demonstrated in the case study.
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1. Introduction
Exploring the randomness in time series is a fundamental task 
when discovering structured patterns in data pertaining to various 
research fields [1]. Noise disturbance in the data may mask 
interesting dynamics, requiring advanced techniques for effective
 
signal processing. Wavelet denoising is a prominent approach 
that leverages wavelet transforms to isolate noise from relevant 
patterns [2]. This type of transforms pro- vides a time-frequency 
decomposition suitable for non-stationary signals, as opposed to the 
well-known Fourier transform, which is appropriate for frequency 
analysis of periodic signals but may lack in time resolution [3]. 
The Morlet wavelet, which com- bines a Gaussian envelope 
with a sinusoidal wave, is particularly effective in isolating local 
oscillatory behaviors within noisy time series [4]. Wavelets 
are extensively used for data compression, noise reduction, and 
feature extraction [5]. Soft-thresholding techniques when applied 
to wavelet coefficients are effective in reducing random noise 
in order to enhance the structure of the signal [6]. The proposed 
wavelet-based denoising method leverages the Morlet wavelet 
transform for decomposing a time series into its components in 

the frequency domain in accordance with a user-defined number 
of resolution scales, isolating high-frequency noise from the 
low-frequency signal. Mutual information shared between these 
components is evaluated in order to set the components with 
minimal information contribution which are typically related to 
noise equal to zero [7]. The remaining components are used to 
reconstruct a denoised version of the input data. The proposed 
method acts as an adaptive filter by dynamically selecting wavelet 
components based on mutual information minimization, filtering 
noisy components without requiring the application of a unique 
threshold to all time series, thus avoiding potential information 
loss. The Locality Sensitive Hashing is successfully adopted 
for exploring time series randomness by detecting segments 
also referred to as blocks of time series pertaining to similar 
fluctuations around the mean of the values in the block [8]. This 
method efficiently detects local recurring patterns in large datasets 
of time series, providing an effective scalable approach to pattern 
recognition. This study demonstrates that filtering the inherent 
noise in time series effectively increases the number of similar 
patterns identified revealing hidden dynamics. The effect of the 
proposed wavelet pre-processing is evaluated by measuring the 
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entropy in each time series subsequent to their denoising. Entropy 
quantifies the unpredictability or information content within a time 
series by measuring the distribution of probabilities associated to 
its observed states. It is widely used in analyzing the complexity 
and randomness of patterns in diverse fields [9]. In this study the 
evaluation of the entropy is an effective approach for analyzing 
pairs of similar blocks for a subsequent application of a Conformal 
Prediction technique in order to evaluate the reliability of the 
proposed detection algorithm. The entropy of the first block in 
the pair is considered as being the true value while the entropy 
of the other is considered as being the predicted value of an ideal 
model so that the residuals are computed for each pair detected as 
being the difference of these values and subsequently transformed 
into non- conformity scores, which are standardized by means of 
the standard deviation of the residuals estimated in a calibration 
set. In this study prediction intervals reflect the uncertainty of 
the detection algorithm in maintaining a pre-defined confidence 
level for the coverage of the solution found by using the proposed 
detection algorithm as it is related to the minimum value of the 
similarity in the detected pairs. Conformal Prediction is a reliable 
distribution-free framework for uncertainty quantification in
 
machine learning [10-12]. The entropy-based validation further 
reinforces its adaptive nature, ensuring optimal pattern detection 
in time series data. A real-world case study is reported in order to 
investigate the potential of the proposed approach.

2. Theoretical Background
In order to introduce the fundamental aspects of the detection 
process to the reader, some notions from the Wavelet Theory 
as well as the basic concepts of the Locality Sensitive Hashing, 
Entropy, Mutual Information and Conformal Prediction framework 
are reported in this section.

2.1. Basics of Wavelet Transform
The Wavelet Transform (WT) is a mathematical technique used 
to analyze signals by decomposing them into different frequency 
components while preserving time localization. Unlike the Fourier 
Transform, which represents a signal as a sum of infinite sinusoidal 
waves, the Wavelet Transform uses localized basis functions called 
wavelets, allowing for multi-resolution analysis. The Continuous 
Wavelet Transform (CWT) is defined as:

where ψ(t) is the mother wavelet, s is the scale parameter 
controlling frequency resolution, and τ is the translation parameter 
determining time localization. The Discrete Wavelet Transform 
(DWT) provides a computationally efficient alternative by 
applying filtering and down sampling, leading to a multi-level 
signal decomposition. It is given by:

where j represents the decomposition level and k denotes the 
position index. The
inverse wavelet transform allows the reconstruction of the original 
signal as:

A key application of wavelets is signal decomposition, where the 
signal is iteratively broken down into approximation and detail 
coefficients. At each level j, the signal is split into an approximation 
Aj (low-frequency content) and a detail Dj (high- frequency 
content), using low-pass h[n] and high-pass g[n] filters:

This decomposition continues recursively, forming a multi-
resolution analysis (MRA). Among the commonly used wavelets, 
the Morlet wavelet is widely adopted due to its optimal balance 
between time and frequency localization, defined as:

The wavelet power spectrum, expressed as W (f, t) 2, provides 
insight into the distribution of signal energy across different 
frequencies and time intervals. Normalization techniques ensure 
comparability with the Fourier spectrum, preserving the total 
energy:

where S˜(f ) is the wavelet spectrum and u′2 is the variance of the 
signal. This approach enables accurate analysis of time-varying 
signals, detecting transient fluctuations and frequency components 
that may be obscured in traditional stationary methods. Wavelet 
denoising using the Morlet transform involves thresholding 
wavelet coefficients in the CWT in order to remove noise while 
preserving significant signal features. This method is especially 
useful for enhancing pattern detection in noisy time series.

2.2. Locality Sensitive Hashing Fundnamentals
In data science Locality Sensitive Hashing (LSH) refers to a 
method designed for an approximate similarity search in high-
dimensional spaces where traditional search methods become 
computationally expensive. There are several metrics that LSH 
encompasses for finding near-duplicates by means of a suitable 
family of hash functions h(·) which establish a relation between 
two input data points (xk, xh) ∈ X and the probability of sharing 
the same hash code: sim(xk, xh) = Pr[h(xk) = h(xh)]. The choice of 
the hash function determines the metric to approximate. Every 
family associates input data to integers which are thought of as 
being buckets with the purpose of hashing is to group similar data 
points together into the same bucket so that neighboring data fall 
into the same bucket with a high probability while data which are 
likely to be distant in the input space belong to different buckets. In 
a database context, this facilitates the detection of pairwise similar 
observations in accordance with varying degrees of similarity. The 
LSH family known as Random Projections adopted in this study 
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ψ(t) = eiω0te−t2/2 (5)

The wavelet power spectrum, expressed as |W (f, t)|2, provides insight into the distri-
bution of signal energy across different frequencies and time intervals. Normalization
techniques ensure comparability with the Fourier spectrum, preserving the total
energy: ∫ ∞

0

S̃(f)df = u′2 (6)

where S̃(f) is the wavelet spectrum and u′2 is the variance of the signal. This approach
enables accurate analysis of time-varying signals, detecting transient fluctuations
and frequency components that may be obscured in traditional stationary methods.
Wavelet denoising using the Morlet transform involves thresholding wavelet coeffi-
cients in the CWT in order to remove noise while preserving significant signal features.
This method is especially useful for enhancing pattern detection in noisy time series.

2.2 Locality Sensitive Hashing fundamentsls

In data science Locality Sensitive Hashing (LSH) refers to a method designed for
an approximate similarity search in high-dimensional spaces where traditional search
methods become computationally expensive. There are several metrics that LSH
encompasses for finding near-duplicates by means of a suitable family of hash func-
tions h(·) which establish a relation between two input data points (xk,xh) ∈ X and
the probability of sharing the same hash code: sim(xk,xh) = Pr[h(xk) = h(xh)]. The
choice of the hash function determines the metric to approximate. Every family asso-
ciates input data to integers which are thought of as being buckets with the purpose of
hashing is to group similar data points together into the same bucket so that neighbor-
ing data fall into the same bucket with a high probability while data which are likely
to be distant in the input space belong to different buckets. In a database context, this
facilitates the detection of pairwise similar observations in accordance with varying
degrees of similarity. The LSH family known as Random Projections adopted in this
study is tailored for evaluating the cosine similarity between numerical sequences. This
family implements the Johnson-Lindenstrauss lemma which states that data belonging
to high dimensional spaces can be projected onto a lower-dimensional space nearly pre-
serving pairwise distances. In order to carry out this task, a set of randomly generated
hyperplanes in the input space is used to project every sequence onto a lower dimen-
sional space. Each hyperplane is considered as a decision boundary so that neighboring
data points are inserted into the same bucket while they are inserted into different
buckets if they are not neighbors. To be more precise, by generating a matrix P with
elements {pij} ∼ N (0, 1) which has as many rows as the dimensions of the input space
and a number of columns equal to the pre-defined number n of hyperplanes, the hash
code of the sequence xk is given by setting every ith element of the vector-matrix prod-
uct ⟨xk,P⟩ equal to 0 if the product of the sequence and the ith column of the matrix
is negative and equal to 1 otherwise. The distribution N (0, 1) denotes a standard nor-
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distribution assumption in order to be estimated. Mutual 
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between variables, each capturing different aspects of the 
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information measures the amount of information exchanged 
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appears obvious that they are complementary measures describing 
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(X, Y). Mutual information is related to entropy  

a linear relationship between two continuous variables while mutual information mea-
sures the amount of information exchanged between variables which captures any type
of relationship. It appears obvious that they are complementary measures describ-
ing different aspects of the association between two random variables (X,Y ). Mutual
information is related to entropy H(·) as reported below:

MI(X,Y ) = H(X) +H(Y )−H(X,Y ) (9)

which can be normalized by dividing it by max(H(X),H(Y )). Equation 9 indicates
that mutual information gains as the degree of regularity increases, implying that
observing one variable provides a better prediction in relation to the other. Therefore
information sharing within time series can be investigated by estimating the mutual
information exchanged by their similar detected blocks. Randomness is higher in less
probable events, i.e. high degrees of randomness may emerge, following the detection
of a few pairs of similar blocks. As it is well known from the literature, mutual Informa-
tion is closely related to the Jensen-Shannon Divergence (JSD), which quantifies the
dissimilarity between two probability distributions. The JSD is defined as the average
of the Kullback-Leibler Divergence between each distribution and their mean. Since
JSD measures the divergence between the entropy distributions of detected blocks, its
reduction implies an increase in mutual information, reinforcing the statistical depen-
dency between the identified segments. As a matter of fact, mutual information is
bounded above by a function of JSD, meaning that as JSD decreases, the detected
patterns tend to share more information, leading to stronger statistical dependence.”

2.5 A quick glance at Conformal Prediction

Conformal Prediction (CP) is a versatile framework for quantifying uncertainty in a
machine learning model, yielding to a guaranteed coverage relating to its prediction
intervals without requiring assumptions about data distribution. This framework is
particularly robust insofar as model reliability is a critical concept as far as practical
applications are concerned. Prediction intervals are evaluated by means of a calibration
set in order to compute non-conformity scores. In this study these latter are calculated
as standardized residuals defined as follows:

si =
|yi − ŷi|

σ
, (10)

where yi and ŷi are respectively the observed (true) and predicted values and σ rep-
resents the standard deviation of the residuals computed by using data belonging to
the calibration set. The prediction intervals for every observation x belonging to the
test set are evaluated as follows:

C(x) = [ŷi − q̂σ, ŷi + q̂σ], (11)

where q̂ is the ⌈(1−α)(n+1)⌉/n quantile with n equal to the number of observations in
the calibration dataset and α is the user-defined level of accuracy. This split-conformal
approach requires that the dataset is partitioned into disjoint calibration and test

6

(·) as reported 
below:

which can be normalized by dividing it by max(

a linear relationship between two continuous variables while mutual information mea-
sures the amount of information exchanged between variables which captures any type
of relationship. It appears obvious that they are complementary measures describ-
ing different aspects of the association between two random variables (X,Y ). Mutual
information is related to entropy H(·) as reported below:

MI(X,Y ) = H(X) +H(Y )−H(X,Y ) (9)

which can be normalized by dividing it by max(H(X),H(Y )). Equation 9 indicates
that mutual information gains as the degree of regularity increases, implying that
observing one variable provides a better prediction in relation to the other. Therefore
information sharing within time series can be investigated by estimating the mutual
information exchanged by their similar detected blocks. Randomness is higher in less
probable events, i.e. high degrees of randomness may emerge, following the detection
of a few pairs of similar blocks. As it is well known from the literature, mutual Informa-
tion is closely related to the Jensen-Shannon Divergence (JSD), which quantifies the
dissimilarity between two probability distributions. The JSD is defined as the average
of the Kullback-Leibler Divergence between each distribution and their mean. Since
JSD measures the divergence between the entropy distributions of detected blocks, its
reduction implies an increase in mutual information, reinforcing the statistical depen-
dency between the identified segments. As a matter of fact, mutual information is
bounded above by a function of JSD, meaning that as JSD decreases, the detected
patterns tend to share more information, leading to stronger statistical dependence.”

2.5 A quick glance at Conformal Prediction

Conformal Prediction (CP) is a versatile framework for quantifying uncertainty in a
machine learning model, yielding to a guaranteed coverage relating to its prediction
intervals without requiring assumptions about data distribution. This framework is
particularly robust insofar as model reliability is a critical concept as far as practical
applications are concerned. Prediction intervals are evaluated by means of a calibration
set in order to compute non-conformity scores. In this study these latter are calculated
as standardized residuals defined as follows:

si =
|yi − ŷi|
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of collisions are n = 32 or higher values. By multiplying every input sequence of L
elements by a sequence of H randomly generated (L× n) matrices {P1,P2, . . . ,PH},
the input dataset is transformed into a dataset of signatures which are sequences of
H i.i.d. hash codes. As a result the input dataset is transformed into a (L ×H) sig-
nature matrix. Subsequent to the creation of the signatures matrix in order to speed
up the near-duplicates search, LSH shrinks the signatures into B bands. Each band
consists of R adjacent hash codes combined together so that the relation H = BR
holds. Similar sequences are finally detected by sorting the (N×B) banded matrix and
sequentially scanning it B times. Every pair of consecutive signatures with at least
one corresponding equal band indicates a pair of near-duplicate input sequences. The
probability of being a pair of similar objects with a similarity value σ is given by:

p(σ,R,B) = 1− (1− σR)B (7)

It is widely reported in the literature that the LSH is an approximate method that can
give rise to false duplicates in the solution. The rate of the same is usually controlled
by an appropriate tuning process of the hyperparameters.

2.3 Entropy: a measure of uncertainty

In the context of information theory entropy is a fundamental measure of uncertainty
in a system. It is a non-negative measure for quantifying the information contained in a
probability distribution in order to assess the unpredictability as well as the dispersion
of data. entropy is defined as:

H(X) = −
N∑
i=1

pi logb pi (8)

where p is the probability that a random variable X may be in state i, the same
being selected among N possible states. Shannon entropy is calculated by setting the
base b in the formula equal to 2. A low entropy value indicates that the system is
highly predictable, while a high entropy value suggests a greater unpredictability in
the data. It is straightforward that a sequence consisting of only one repeated value
has entropy zero (no uncertainty) in contrast to a sequence in which all values occur
with equal probability, implying a maximum value of the entropy (system uncertainty).
Applications of Entropy In this study entropy is proposed as a measure of the accuracy
of the proposed detection algorithm.

2.4 Mutual information: basic concepts

Mutual information is a well-known measure of the dependency in time series analysis.
This measure accounts for non-linear dependencies and requires no specific theoretical
probability distribution assumption in order to be estimated. Mutual information as
well as correlation are measures of association between variables, each capturing dif-
ferent aspects of the relationship. Correlation measures the strength and direction of
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a linear relationship between two continuous variables while mutual information mea-
sures the amount of information exchanged between variables which captures any type
of relationship. It appears obvious that they are complementary measures describ-
ing different aspects of the association between two random variables (X,Y ). Mutual
information is related to entropy H(·) as reported below:

MI(X,Y ) = H(X) +H(Y )−H(X,Y ) (9)

which can be normalized by dividing it by max(H(X),H(Y )). Equation 9 indicates
that mutual information gains as the degree of regularity increases, implying that
observing one variable provides a better prediction in relation to the other. Therefore
information sharing within time series can be investigated by estimating the mutual
information exchanged by their similar detected blocks. Randomness is higher in less
probable events, i.e. high degrees of randomness may emerge, following the detection
of a few pairs of similar blocks. As it is well known from the literature, mutual Informa-
tion is closely related to the Jensen-Shannon Divergence (JSD), which quantifies the
dissimilarity between two probability distributions. The JSD is defined as the average
of the Kullback-Leibler Divergence between each distribution and their mean. Since
JSD measures the divergence between the entropy distributions of detected blocks, its
reduction implies an increase in mutual information, reinforcing the statistical depen-
dency between the identified segments. As a matter of fact, mutual information is
bounded above by a function of JSD, meaning that as JSD decreases, the detected
patterns tend to share more information, leading to stronger statistical dependence.”

2.5 A quick glance at Conformal Prediction

Conformal Prediction (CP) is a versatile framework for quantifying uncertainty in a
machine learning model, yielding to a guaranteed coverage relating to its prediction
intervals without requiring assumptions about data distribution. This framework is
particularly robust insofar as model reliability is a critical concept as far as practical
applications are concerned. Prediction intervals are evaluated by means of a calibration
set in order to compute non-conformity scores. In this study these latter are calculated
as standardized residuals defined as follows:

si =
|yi − ŷi|

σ
, (10)

where yi and ŷi are respectively the observed (true) and predicted values and σ rep-
resents the standard deviation of the residuals computed by using data belonging to
the calibration set. The prediction intervals for every observation x belonging to the
test set are evaluated as follows:

C(x) = [ŷi − q̂σ, ŷi + q̂σ], (11)

where q̂ is the ⌈(1−α)(n+1)⌉/n quantile with n equal to the number of observations in
the calibration dataset and α is the user-defined level of accuracy. This split-conformal
approach requires that the dataset is partitioned into disjoint calibration and test
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of relationship. It appears obvious that they are complementary measures describ-
ing different aspects of the association between two random variables (X,Y ). Mutual
information is related to entropy H(·) as reported below:

MI(X,Y ) = H(X) +H(Y )−H(X,Y ) (9)

which can be normalized by dividing it by max(H(X),H(Y )). Equation 9 indicates
that mutual information gains as the degree of regularity increases, implying that
observing one variable provides a better prediction in relation to the other. Therefore
information sharing within time series can be investigated by estimating the mutual
information exchanged by their similar detected blocks. Randomness is higher in less
probable events, i.e. high degrees of randomness may emerge, following the detection
of a few pairs of similar blocks. As it is well known from the literature, mutual Informa-
tion is closely related to the Jensen-Shannon Divergence (JSD), which quantifies the
dissimilarity between two probability distributions. The JSD is defined as the average
of the Kullback-Leibler Divergence between each distribution and their mean. Since
JSD measures the divergence between the entropy distributions of detected blocks, its
reduction implies an increase in mutual information, reinforcing the statistical depen-
dency between the identified segments. As a matter of fact, mutual information is
bounded above by a function of JSD, meaning that as JSD decreases, the detected
patterns tend to share more information, leading to stronger statistical dependence.”
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6sets. The CP framework requires a dataset of n observations {(X = xi, Y = yi)}
(i = 1, 2, . . . , n) with features X ∈ Rd and response y ∈ R, the prediction interval
C(X) = [L(X), U(X)] covers the true value with probability:

Pr(y ∈ C(X)) ≥ 1− α, (12)

In order to further evaluate the properties of prediction intervals whilst ensuring a
pre-fixed coverage the Mean Interval Width (MIW) is used. It is defined as:

MIW =
1

n

n∑
i=1

(Ui − Li) (13)

where Ui and Li are the upper and lower bounds of the prediction interval for obser-
vation i in a test set containing n observations. In order to normalize this measure
relative to the scale of the target variable, the Relative Interval Width (RIW):

RIW =
MIW

ymax − ymin
(14)

where ymax and ymin denote the maximum and minimum observed values of the target
variable. A lower MIW indicates narrower intervals, while a lower RIW facilitates
comparisons across different datasets or models by adjusting for data scale variations.
Thse measures ensure a precise evaluation of the adaptivity of the prediction intervals.

3 Detection of similar patterns in time series

The proposed algorithm is devised for detecting similar blocks embedded in a large
dataset of time series. The workflow of the allgorithm is described in this section.

3.1 Time series denoising by using the Morlet decomposition

In the proposed approach, a time series of length T is processed by means of a wavelet
filtering based on the Morlet transform for decomposing the time series into compo-
nents in the frequency domain in accordance with a pre-fixed number of resolution
scales Nscale. The basics of the Morlet wavelet have been briefly described in Section 2.
These aforementioned components make up the columns of a /T × (Nscale + 1))
complex-valued matrix in which each column is a component related to a specific fre-
quency scale. Columns are aligned so that those on the left are connected to lower
frequency components while those on the right are related to higher frequency compo-
nents. Noise filtering solely takes the real part of this matrix into account. Comencing
from the first column on the left side of the matrix, the components are iteratively
considered in order to reconstruct the time series for an evaluation of the mutual infor-
mation exchanged vetween the same and the other time series reconstructed in which
the remaining components are used. The process is carried out for j = 1, 2, . . . , Nscale

in order to seek for the index J which splits the matrix in two disjoint partitions so
that the mutual information exchanged between the time series has a minimum value.
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As a consequence, the time series which is reconstructed by using those low-frequency
components which are scarcely correlated to the noise. The recinstructed time series
is defined as follows: where ψ is the Morlet transform defined as followa:

Algorithm 1 Decomposition of the time series ts.decomp

input: ts.input, # scales Nscale, time series length T , central frequency ω∗

Output: matrix of wavelet transform coefficients WT (j, k)
for j = 0 to Nscale do

for k = 1 to T do WT (k, j + 1) ⇐ ψ(t = 1 : T, ω = ω∗, j = j, τ = k) · ts.input
end for

end for
return WT

ψ(t) =
1√
d
π− 1

4 eiω
(t−τ)

d e−
(t−τ)2

2d2 (15)

where t is the time variable, τ is the translation parameter of the wavelet, ω is the
central frequency of the wavelet, j is a scale parameter, and d is the dilation factor,
defined as d = 2 · 2j·0.125. This form represents a complex wavelet, characterized
by an exponential modulation with frequency ω and a Gaussian envelope ensuring
localization in both time and frequency. The proposed filtering algorithm is described
in Algorithm 3.1 The Inverse Morlet Wavelet Transform in the filtering algorithm is
described in Algorithm 3.1, while the function for the rconstruction of the time series
in the time domain is reported in in Algorithm 3.1. In order to evaluate the mutual
information exchanged between the time series of first-order differences resulting from
the denoised time series and the complementary one as 9s reported in Algorithm 3.1
is required a further processing provided by the function discretize which returns 1
when the fitst-order diffrtrnce is equal to 1 and 0 otherwise.

3.2 Similar blocks detection

Consider an input dataset X with N time series each one being T time periods long1.
A time window of length L < T is used to break every input series down into blocks
x(k) = {x(k−1)+1 − µk, x(k−1)+2 − µk, . . . , x(k−1)+L − µk} by shifting them one period
k at a time so that the total number of resulting blocks C from the input dataset is
equal to N(T − L+ 1). The variable µk is the average of all values in the block. The
thus created input dataset is transformed into the signatures matrix as described in
Section 2. The LSH-family of Random Projections approximates the pairwise cosine
similarity between the blocks. The solution set is composed by all pairs with a high
probability of being similar with a high degree of similarity. Due to the probabilistic
nature of the LSH, the presence of false duplicates must be controlled by carefully
selecting the parameters {H,B,R}. Their setting is generally a critical aspect of the

1In order to facilitate the comprehension of the algorithm, all the time series are of the same length even
though it is not a necessary requirement.
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where t is the time variable, τ is the translation parameter of the 
wavelet, ω is the central frequency of the wavelet, j is a scale 
parameter, and d is the dilation factor, defined as d = 2 2 j·0.125. 
This form represents a complex wavelet, characterized by an 
exponential modulation with frequency ω and a Gaussian envelope 
ensuring localization in both time and frequency. The proposed 
filtering algorithm is described in Algorithm 3.1 The Inverse 
Morlet Wavelet Transform in the filtering algorithm is described in 
Algorithm 3.1, while the function for the reconstruction of the time 
series in the time domain is reported in in Algorithm 3.1. In order 
to evaluate the mutual information exchanged between the time 
series of first-order differences resulting from the denoised time 
series and the complementary one as 9s reported in Algorithm 3.1 
is required a further processing provided by the function discretize 
which returns 1 when the first-order deferred is equal to 1 and 0 
otherwise.

3.2. Similar Blocks Detection
Consider an input dataset X with N time series each one being T 
time periods long1. A time window of length L < T is used to break 
every input series down into blocks x(k) =  {x(k−1)+1  µk, x(k−1)+2  µk, . 
. . , x(k−1)+L  µk  by shifting them one period k at a time so that the 
total number of resulting blocks C from the input dataset is equal 
to N (T ₋ L + 1). The variable µk is the average of all values in 
the block. The thus created input dataset is transformed into the 
signatures matrix as described in Section 2. The LSH-family of 
Random Projections approximates the pairwise cosine similarity 
between the blocks. The solution set is composed by all pairs with 
a high probability of being similar with a high degree of similarity. 
Due to the probabilistic nature of the LSH, the presence of false 
duplicates must be controlled by carefully selecting the parameters 
{H, B, R}. Their setting is generally a critical aspect of the

Algorithm 2 Wavelet filtering

1: input: time series ts.input, number of scales Nscale

2: output: filtered time series ts.lo
3: compute first-order difference: y ← diff(ts.input)
4: perform wavelet decomposition: WT ← ts.decomp(y, Nscale)
5: extract real part of wavelet coefficients: WT.real ← Re(WT)
6: initialize mutual information matrix: MI ← ∅
7: for k = 1 to Nscale do
8: initialize WT.lo ← WT.real
9: initialize WT.hi ← WT.real

10: set the first k components of WT.lo[tozero :, 1 : k] ← 0
11: set the (Nscale + 1)− k components of WT.hi to zero: WT.hi[:,−{1 : k}] ← 0
12: reconstruct time series: ts.lo ← ts.reconstruct(imwt(WT.lo), ts.input[1])
13: reconstruct complementary series: ts.hi ←

ts.reconstruct(imwt(WT.hi), ts.input[1])
14: compute mutual information:MI[k] ← mutual information(discretize(diff(ts.lo)), discretize(diff(ts.hi)))
15: end for
16: find the index of the minimum mutual information: id ← argmin(MI)
17: select the last occurrence of the minimum: id ← id[length(id)]
18: zero out the first id components in WT.lo: WT.lo[:, 1 : id] ← 0
19: reconstruct the final filtered time series: ts ←

ts.reconstruct(imwt(WT.lo), ts.input[1])
20: return ts.lo

Algorithm 3 Inverse Morlet Wavelet Transform: imwt

1: input: wavelet coefficient matrix WT
2: output: reconstructed time series ts.denoised
3: T ← number of rows in WT (time series length)
4: J ← number of columns in WT minus one
5: extract real part of wavelet coefficients: WT.real ← Re(WT)
6: compute dilation factors: dial ← 2 · 2(0:J·0.125)
7: initialize reconstructed series: ts.denoised ← ∅ of length T
8: for l = 1 to t do
9: ts.denoised[l] ← 0.2144548 ·

∑ WT.real[l,j]√
dial[j]

10: end for
11: return ts.denoised

nearest neighbors search insofar as a wrong setting could compromise the goodness
of the solution. The parameters in the algorithm proposed here are therefore set to
achieve an almost zero false negatives rate in opposition to a probable higher false
positives rate. In order to lower the rate of false positives, the number of the pairs
detected usually can be reduced by filtering out all the pairs whose cosine similarity is
below a pre-defined threshold τ from the set of the detected pairs. This study proposes
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number of the pairs detected usually can be reduced by filtering 
out all the pairs whose cosine similarity is below a pre-defined 
threshold τ from the set of the detected pairs. This study proposes

Algorithm 4 Reconstruction of the Denoised Time Series

1: input: differenced time series ts.diff , initial value ts.x0
2: output: reconstructed time series ts.denoised
3: set T

′ ← length of ts.diff
4: Initialize reconstructed series: ts.denoised ← ∅ of length T

′
+ 1

5: Set initial value: ts.denoised[1] ← ts.x0
6: for i = 2 to T

′
+ 1 do

7: ts.denoised[i] ← ts.diff [i− 1] + ts.denoised[i− 1]
8: end for
9: return ts.denoised

a Conformal Prediction approach in order to refine the solution set in a pre-defined
confidence level without an explicit similarity threshold requirement.

3.3 Evaluating the entropy in the detected blocks

Following the detection of the pair of similar blocks the entropy H of each block is
evaluated by recurring to the Shannon entropy of Section 2. The function for the
evaluation is described in Algorithm 3.3.

Algorithm 5 Evaluating the entropy

1: input: block of z-scores x = zscore, discretization categories b
2: output: entropy in the block H(x)
3: discretize block x into b intervals
4: evaluate the frequency of each interval in the block
5: calculate the probabilities pi by normalizing the frequencies
6: calculate entropy H(x) = −

∑
pi log2 pi

7: return entropy H(x)

3.4 Evaluating the accuracy of the detection approach

The entropy pertaining to the similar blocks belonging to every pair detected is con-
sidered as being the true value y = Hleft and the predicted value ŷ = Hright of an
ideal black-box predictive model which is evaluated by adopting the Conformal Pre-
diction approach reported in Section 2. The solution set of the previously mentioned
pairs is split into calibration and test datasets, having taken the solution set as being
the result of a pre-trained model y = f(x) into account. Vector x is one of the blocks
in the pair with the underlying assumption that the blocks in the pair are the same.
The prediction intervals pertaining to the dependent variable of this model (entropy
of the blocks belonging to the test set partition) are estimated by evaluating the quan-
tile ⌈(1 − α)(n + 1)⌉/n of the non-conformity scores by using the calibration data as
described in Section 2. In the context of Conformal Prediction, the confidence level
1−α and the accuracy of prediction intervals are closely related. The confidence level
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the predicted value y = H right of an ideal black-box predictive 
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taken the solution set as being the result of a pre-trained model y = 
f (x) into account. Vector x is one of the blocks in the pair with the 
underlying assumption that the blocks in the pair are the same. The 
prediction intervals pertaining to the dependent variable of this 
model (entropy of the blocks belonging to the test set partition) 
are estimated by evaluating the quantile (1 ₋ α)(n + 1) / n of the 
non-conformity scores by using the calibration data as described in 
Section 2. In the context of Conformal Prediction, the confidence 
level 1 − α and the accuracy of prediction intervals are closely 
related. The confidence level
 
represents the probability that the true value of the target variable 
falls within the prediction interval and is a user-defined parameter, 
higher confidence level provides wider intervals, increasing the 
likelihood of containing the correct value while lower confidence 
level results in narrow intervals. The accuracy of the prediction 
intervals refers to the ability of the model to ensure that the 

empirical coverage matches the expected one. A coverage of 95% 
implies that the true value of the entropy falls into the intervals 
95% of the times. Wide intervals may lack in being informative, 
whereas narrow intervals may exclude true values. This study 
proposes a 95% confidence level in order to refine the number of 
the pairs so that the true value of the entropy is inside the prediction 
intervals.

4. Application to Financial Markets
As it is known from the literature, financial markets are not perfectly 
efficient implying that the exploitation of past information is not 
useless. As market efficiency is closely related to the randomness 
of the same, it is worth detecting the repeated patterns of price 
movements over time. On the basis of these concepts, a dataset 
containing various financial market indices is explored as a case 
study.

4.1. The Input Dataset
Consider a dataset comprising daily values of N = 27 market 
indices (see Table 1). All data was collected via web scraping. The 
downloaded time series may have covered different time periods 
ranging from 2000-01-03 to 2024-02-15, resulting in varying 
lengths as indicated in Table 1. The time window used to divide all 
the series into blocks is set to L = 10 days.

ˆ
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The presence of missing data has to be managed prior to starting the 
proposed method, thus, it was necessary to identify missing data in 
each time series. Blocks containing at least one missing value were 
excluded from the analysis. No further data preprocessing was 
carried out. For this study, the input dataset contains a total of C = 
161868 blocks to be investigated for similarities. Standard pairwise 
comparisons for similar blocks would require approximately 1.31 
1010 comparisons, rendering the search computationally infeasible. 
In order to investigate the effect of the proposed wavelet filtering 
approach for noise removal in time series analysis, the detection of 
pairs of similar blocks is carried out in the original dataset of eprld 
market indices (case A) as well as on the denoised version of the 
same (case B) for comparison.

4.2. Comparison of the Results
The total number of pairs of similar blocks detected in case A is 
equal to 207713 while in the case B the total number increases to 
454052 fir an increment equal to 118.6%. In order to simplify the 
reading of the results of the comparison between the detections of 
the similar blocks within the time series with and without noise, 
only the counts of similar blocks belonging to the same time 
series are reported in Table 2. In this case the hyperparameters of 
the detection algorithm are set up to provide that every block is 
identified by a signature of H = 200 i.i.d. hash codes. Every hash 
is a n = 32 long

N Index Description T
1 AORD Ordinaries 6100
2 AXJO S1&PASX 200 6095
3 BFX BEL 20 6164
4 BSESN S&P BSE SENSEX 5948
5 BUK100P Cboe UK 100 3397
6 DJI Dow Jones Industrial Average 6069
7 FCHI CAC 40 6167
8 FTSE FTSE 100 6093
9 GDAXI DAX Performance-Index 6127
10 GSPC S&P 500 6069
11 GSPTSE S&PTSX Composite index 6060
12 HSI HANG SENG 5945
13 IMOEX.ME MOEX Russia Index 2699
14 IXIC NASDAQ Composite 6069
15 JKSE IDX Composite 5867
16 KLSE FTSE Bursa Malaysia KLCI 5916
17 KS11 KOSPI Composite Index 5949
18 N100 Euronext 100 Index 6170
19 N225 Nikkei 225 5911
20 NYA NYSE Composite (DJ) 6069
21 NZ50 S&PNZX 50 Index Gross & Gross 5204
22 RUT Russell 6069
23 STI STI Index 6035
24 STOXX50E ESTX 50 PR.EUR 4234
25 TWII TSEC weighted 5919
26 VIX CBOE Volatility Index 6069
27 XAX NYSE AMEX Composite Index 6069

Table 1: World Market Indices In in the Dataset
integer which is a sufficient length (in bits) for hashing the blocks 
with a low number of collisions. Each signature is grouped into 
B = 50 bands of R = 4 hashes combined in bitwise XOR. Due to 
these hyperparameters the probability of detecting a pair of blocks 
with a cosine similarity equal to 0.8 equates to 1 (see Equation 
7) dropping the probability of false negatives to zero while the 
probability of false positives increases. As mentioned in the 
previous Section, the proposed Conformal Prediction approach for 

the evaluation of the accuracy of the detection of similar blocks 
implies that a coverage of the intervals of 95% as well as a good 
adaptivity of the same implies a high similarity between the blocks 
not requiring therefore the setting of a user-defined threshold in 
order to decrease the number of false positives.

The evaluation of RIW reveals a significant adaptivity of the 
prediction intervals subsequent to wavelet denoising. The RIW 
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decreased from 0.6667 to 0.2579, corresponding to a 61.31% 
reduction. This substantial decrease suggest a significant reduction 
of uncertainty in comparing the entropies pertaining to the blocks 
of each detected pair. A further assessment of the performance of 
the wavelet denoising is highlighted by the reduction in Jensen-

Shannon Divergence between the distribution of entropies 
pertaining to the first block of the pairs and the distribution of 
those pertaining to the second pnes,, which dropped from a value 
equal to 0.002353539 to 8.363279 × 10−5, a −96.45% decrease. 
This suggests that wavelet denoising effectively

Index case A case B Increment (%)
AORD 651 6660 922.58
AXJO 523 6606 1162.14
BFX 604 7570 1153.64
BSESN 935 12356 1211.23
BUK100P 105 15097 14283.81
DJI 429 10099 2254.30
FCHI 360 6209 1624.72
FTSE 348 7081 1935.06
GDAXI 459 8345 1717.65
GSPC 334 7505 2146.71
GSPTSE 575 6998 1117.91
HSI 492 53253 10622.56
IMOEX.ME 108 25435 23537.04
IXIC 475 46745 9744.21
JKSE 518 9771 1786.48
KLSE 895 24119 2595.64
KS11 615 5951 867.64
N100 390 7138 1729.23
N225 423 40742 9529.31
NYA 359 7046 1862.12
NZ50 833 6085 630.85
RUT 378 7700 1937.57
STI 650 35242 5329.54
STOXX50E 169 7119 4113.02
TWII 614 8108 1220.52
VIX 159 11701 7260.38
XAX 660 12999 1869.55

Table 2: Pairs of Similar Blocks in Time Series

removes irrelevant variations, enhancing the detection of similar 
patterns embedded in the time series. Due to the inverse relation 
between JSD and mutual information, a reduction in JSD implies 
an increase in mutual information within the detected blocks, 
confirming that the removal of high-frequency components from 

the time series is effective in unveiling structured, non-random 
patterns in the data. A further comparison between the case of the 
detection of the original market indices and the denoised version 
of the same is reported in Table 3.

Min. 1st Qu. Median Mean 3rd Qu. Max.
case A

CS > 0 0.8502 0.9993 0.9999 0.9970 1.0000 1.0000
CS < 0 -1.0000 -1.0000 -1.0000 -0.9958 -0.9986 -0.8501

case B
CS > 0 0.9646 0.9999 1.0000 0.9998 1.0000 1.0000
CS < 0 -1.0000 -1.0000 -0.9998 -0.9992 -0.9992 -0.9453

Table 3: Cosine Similarity of the Pairs Detected
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In the context of the proposed approach based on Conformal 
Prediction, the requirement of 95% coverage of the prediction 
intervals for the entropy in pairs of similar blocks implies a 
high value of their cosine similarity, both when the pairs have 
concordant trend (CS > 0 and when they have opposite trend (CS 

< 0). The results reported in Table 3 highlight the positive effect 
of the noise removal achieved by means of the wavelet filtering. 
In order to assess the statistical informativeness of the results, a 
further investigation focuses on the mutual information exchanged 
within the blocks detected. A summary is reported in Table 4.

Min. 1st Qu. Median Mean 3rd Qu. Max.
case A

CS > 0 

CS < 0

0.1889 

0.1717

0.6407

0.6407

0.7004

0.7004

0.6935

0.6931

0.7547

0.7621

1.0000

1.0000
case B

CS > 0 

CS < 0

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

Table 4: Mutual Information Exchanged in the Pairs Detected
As is reported from the results, wavelet denoising together with the 
evaluation of prediction intervals of the entropies in the blocks in 
order to refine the solution pro- vides a sensitive improvement of 
the detection of repeated structured patterns in the input time series 
resulting in a high cosine similarity which indicates that the time series 
exhibit local similar patterns in direction, which as it is well known 
from the literature is uncorrelated to mutual information exchanged 
by the detected patterns. The removal of high-frequency noise while 
preserving the fundamental structure of the time series implies that 
cosine similarity renders a more robust measure of patterns similarity 
as it is not affected by noise. As a consequence, these denoised 
structured patterns are strongly similar in direction and exhibit almost 
equal entropy values in each detected pair, implying high values of 
the mutual information exchanged between them as reported in Table 
4.

5. Conclusion
This study proposed an enhanced methodology for detecting similar 
patterns in time series by integrating wavelet-based denoising with 
Locality Sensitive Hashing and Con- formal Prediction. The approach 
leverages the Morlet wavelet transform to filter out high-frequency 
components, thus highlighting patterns with a structure which might 
remain obscured in the original time series. Although LSH is devised 
for detecting similar patterns based on geometric properties, such 
as cosine similarity as is the case for Random Projections hashing 
functions, the integration of wavelet denoising modifies the nature 
of the detected similarities. By applying entropy-based validation 
in a Conformal Prediction framework, the method identifies 
patterns that, beyond their geometric resemblance, exchange a 
high mutual information. This aspect is particularly relevant since 
mutual information is a statistical measure of dependency that is not 
necessarily related to cosine similarity. The results demonstrate that 
noise filtering
 
not only increases the number of detected patterns but also refines 
their statistical coherence, ensuring that detected patterns are not just 
structurally similar but also statistically significant. The application to 
financial market indices validated the effectiveness of this approach as 
it resulted is a substantial increase in the number of detected patterns 
subsequent to denoising and a significant reduction in uncertainty 
in the evaluation of their entropy. The observed increase in mutual 

information between detected pairs reinforces the hypothesis that 
reducing high-frequency noise enhances the identification of relevant 
patterns that go beyond simple geometric similarity. These findings 
highlight the potential of integrating wavelet filtering and entropy-
based validation within similarity search frameworks, providing a 
more robust approach to uncovering complex dependencies in time 
series data.
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