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Abstract
This paper introduces a unified cross-asset framework that separates intrinsic “value” from market “price” and 
integrates both asset-specific and common risk factors in a single, coherent structure. By incorporating a state-space 
representation of key macroeconomic and market variables, the framework models the joint evolution of asset values 
and states. A unified pricing kernel links these values to observed prices, ensuring internal consistency across equities, 
bonds, and potentially other asset classes. We strengthen this framework by offering explicit conditions for no-arbitrage 
between equity and bond value formulations, refining the state-space dynamics to accommodate regime shifts or jumps, 
proposing a concrete empirical strategy grounded in a twostep Kalman filtering approach, and outlining practical 
implementation guidelines that bridge theory and practice. Through these enhancements, we provide a more robust 
theoretical foundation and clearer guidance for real-world application.
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1. Introduction
Equities and bonds have traditionally been valued using distinct 
methodologies in both academic research and industry practice. 
Equity valuation techniques, such as discounted cash flow models, 
usually emphasize growth and earnings, while bond pricing 
relies more directly on coupon flows, default risks, and inflation 
considerations. Over time, researchers and practitioners have 
come to recognize that some risk factors, such as macroeconomic 
shocks and changes in investor risk appetite, affect both equities 
and bonds in a unified manner. These factors may influence both 
asset classes simultaneously, particularly during flight-to-quality 
episodes when correlations shift abruptly.

In this paper, we develop and refine a framework that applies a 
single discounting mechanism, often referred to as a pricing kernel, 
to both equities and bonds while preserving a distinction between 
the intrinsic or fundamental value of each asset and its observed 
market price. We build on earlier versions of this framework by 
addressing four key enhancements. First, we impose explicit no-
arbitrage conditions that ensure that the equity and bond value 
specifications do not lead to exploitable price differentials. Second, 
we enrich the statespace model by allowing for jumps or regime-
switches, which become particularly relevant when investors 
unexpectedly change their risk perception. Third, we propose a 

two-step Kalman filtering approach, which clarifies the empirical 
procedures needed to estimate the underlying state variables from 
macroeconomic data and asset market observations. Fourth, we 
outline guidelines to handle parameter instability, detect regime 
changes, and improve computational efficiency, thereby providing 
clearer directions for implementing the theory in real-world 
settings.

2. Literature Review
Several strands of literature converge in this unified framework. 
Consumption-based asset pricing, pioneered by Lucas (1978), 
Breeden (1979), and extended by Cochrane (2001), anchors the 
theoretical foundation [1-3]. This strand emphasizes the marginal 
rate of substitution in consumption as the basis for pricing all 
assets, suggesting a single pricing kernel can indeed be applied 
across multiple asset types. The term-structure literature, including 
classic contributions by Vasicek (1977) and Duffie and Kan (1996), 
has deepened our understanding of how risk-free rates, inflation, 
and other yield curve factors evolve and inform bond prices [4,5]. 
Macro-finance integration, explored by Ang and Piazzesi (2003) 
and studied further by Caballero and Krishnamurthy (2008) and 
Bekaert and Engstrom (2010), has shown that common factors 
such as growth and risk premia can affect multiple asset classes 
and can shift significantly under different market regimes [6-8].
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Although many previous works have studied either equity or 
bond pricing under comprehensive economic conditions, few 
frameworks explicitly disentangle the fundamental value drivers 
of these assets from the market discounting process, while still 
imposing no-arbitrage across asset classes. Our present framework 
extends existing research by introducing such a no-arbitrage 
condition, which ensures that the separate value formulations for 
equities and bonds cannot be exploited to generate riskless profit. 
Furthermore, by enriching the statespace model with jumps or 
regime switches, we more closely capture the abrupt correlation 
changes often witnessed during crises.

3. Core Theoretical Innovation: The Value–Price Separation
3.1 Unified Value Function with No-Arbitrage Conditions
The key theoretical innovation of this paper lies in unifying the 
specification of an asset’s intrinsic value for both equities and bonds 
while ensuring that no-arbitrage conditions hold. We introduce a 
value function, V (t), defined separately for equities and bonds:

where Et denotes current equity earnings, g(St) represents growth 
as a function of the state St, Q(St) is a measure of firm-specific 
quality, Ct is a coupon-like payout for a bond, L (t) is a loss or 
default probability, and D(πt) captures inflation-related effects.

To avoid arbitrage, the discounted payoff of an asset derived from 
these value formulas must not allow the creation of a riskless profit 
by combining or decomposing equity and bond claims on the same 
underlying cash flows. Formally, if a portfolio that synthetically 
replicates a firm’s unlevered cash flows were to produce higher 
payoffs under one specification (equity) than under another (bond) 
while facing the same risk, an arbitrage condition would emerge. 
Therefore, we impose constraints on g(St), L(t), and D(πt) to ensure 
that neither the equity-related nor the bond-related part of the firm’s 
cash flows produces a strictly higher payoff without corresponding 
risk exposure.

4. Mathematical Framework Refinement
4.1 Extended State-Space Dynamics with Jumps
We define a state vector,

where gt represents growth, πt denotes inflation, rt is the risk-free 
rate, λt is a measure of the market price of risk or risk aversion, 
and θt is a factor capturing cross-asset correlations. In earlier 
versions of the framework, the dynamics of the combined system, 
consisting of V (t) and S(t), were modeled in a linear fashion:

This linear model captures incremental changes in both the value 

functions and the state variables.

In order to incorporate abrupt regime changes or jumps in risk 
perception, we enrich this specification as follows:

where Γ(t) translates the size of the jump or regime shift into 
changes in V (t) and S(t), and J (t + 1) is a jump process that 
may be represented by a Poisson random variable or a Markov-
switching regime indicator. This extended specification addresses 
phenomena such as flight-to-quality spikes, where the correlation 
between equities and bonds may suddenly shift, as well as crises 
where default probabilities or market risk aversion can jump 
sharply.

4.2 Unified Pricing Kernel
We employ a consumption-based or CRRA-type pricing kernel:

where β is the discount factor, where β is the discount factor,
(

Ct+1

Ct

)−γ

captures time-varying marginal utility of consump-

tion for a CRRA investor, and λ(St) interacts with Σ(t) ε(t + 1) to represent the state-
dependent pricing of risk. By design, this kernel is applied uniformly to the discounted
value of both equity and bond payoffs, ensuring consistency across the two asset classes and
eliminating opportunities for arbitrage that might arise if different discount rates were used.

4.3 Price Formation for Equities and Bonds

Under this unified approach, the price of an equity is given by

Pe(t) = Et

[ ∞∑
s=t+1

M(t, s)
(
Vs +R(s)

)]
+ Et

[
M(t,∞)T (∞)

]
,

where R(s) represents dividends or other near-term payouts, and T (∞) can be a terminal
value in perpetuity or liquidation value. For bonds, the price becomes

Pb(t) = Et

[ T∑
s=t+1

M(t, s)Vs

]
+ Et

[
M(t, T ) Principal

]
,

where Vs here includes coupon-related value at each future date, and the principal is repaid
(assuming no default) at maturity T . In both cases, jumps or regime changes affect expected
future payouts through Vs and change the discount factor throughM(t, s), allowing the model
to capture the abrupt price movements often witnessed in real markets.

5 Portfolio Optimization

Consider a portfolio consisting of equities and bonds, with values Ve(t) and Vb(t) respectively,
and weights we and wb. The total portfolio value at time t is

Vp(t) = w⊤
e Ve(t) + w⊤

b Vb(t).

The goal is to maximize expected utility of the terminal portfolio value Vp(T ):

max
we,wb

E
[
U
(
Vp(T )

)]
subject to we + wb = 1 and we, wb ≥ 0.

In dynamic settings, where flight-to-quality behavior or regime shifts can abruptly alter the
correlation structure captured by Σ(t) and Γ(t) J(t+1), the portfolio weights may be recal-
ibrated to adapt to the new market environment. This dynamic perspective acknowledges
that both the payoffs and the risk premia for equities and bonds may move in concert,
particularly in stress regimes.

4

 captures time-varying 
marginal utility of consumption for a CRRA investor, and λ(St) 
interacts with Σ(t) ε (t + 1) to represent the statedependent pricing 
of risk. By design, this kernel is applied uniformly to the discounted 
value of both equity and bond payoffs, ensuring consistency across 
the two asset classes and eliminating opportunities for arbitrage 
that might arise if different discount rates were used.

4.3 Price Formation for Equities and Bonds
Under this unified approach, the price of an equity is given by

where R (s) represents dividends or other near-term payouts, and T 
(∞) can be a terminal value in perpetuity or liquidation value. For 
bonds, the price becomes

where Vs here includes coupon-related value at each future date, 
and the principal is repaid (assuming no default) at maturity T. 
In both cases, jumps or regime changes affect expected future 
payouts through Vs and change the discount factor through M(t,s), 
allowing the model to capture the abrupt price movements often 
witnessed in real markets.

5. Portfolio Optimization
Consider a portfolio consisting of equities and bonds, with values 
Ve(t) and Vb(t) respectively, and weights we and wb. The total 
portfolio value at time t is

specifications do not lead to exploitable price differentials. Second, we enrich the state-
space model by allowing for jumps or regime-switches, which become particularly relevant
when investors unexpectedly change their risk perception. Third, we propose a two-step
Kalman filtering approach, which clarifies the empirical procedures needed to estimate the
underlying state variables from macroeconomic data and asset market observations. Fourth,
we outline guidelines to handle parameter instability, detect regime changes, and improve
computational efficiency, thereby providing clearer directions for implementing the theory in
real-world settings.

2 Literature Review

Several strands of literature converge in this unified framework. Consumption-based asset
pricing, pioneered by Lucas (1978), Breeden (1979), and extended by Cochrane (2001),
anchors the theoretical foundation. This strand emphasizes the marginal rate of substitution
in consumption as the basis for pricing all assets, suggesting a single pricing kernel can
indeed be applied across multiple asset types. The term-structure literature, including classic
contributions by Vasicek (1977) and Duffie and Kan (1996), has deepened our understanding
of how risk-free rates, inflation, and other yield curve factors evolve and inform bond prices.
Macro-finance integration, explored by Ang and Piazzesi (2003) and studied further by
Caballero and Krishnamurthy (2008) and Bekaert and Engstrom (2010), has shown that
common factors such as growth and risk premia can affect multiple asset classes and can
shift significantly under different market regimes.

Although many previous works have studied either equity or bond pricing under compre-
hensive economic conditions, few frameworks explicitly disentangle the fundamental value
drivers of these assets from the market discounting process, while still imposing no-arbitrage
across asset classes. Our present framework extends existing research by introducing such a
no-arbitrage condition, which ensures that the separate value formulations for equities and
bonds cannot be exploited to generate riskless profit. Furthermore, by enriching the state-
space model with jumps or regime switches, we more closely capture the abrupt correlation
changes often witnessed during crises.

3 Core Theoretical Innovation: The Value–Price Sep-

aration

3.1 Unified Value Function with No-Arbitrage Conditions

The key theoretical innovation of this paper lies in unifying the specification of an asset’s
intrinsic value for both equities and bonds while ensuring that no-arbitrage conditions hold.
We introduce a value function, V (t), defined separately for equities and bonds:

V (t) =




Et


1 + g(St)


Q(St), (Equities),

Ct


1− L(t)


1−D(πt)


, (Bonds),

2

where Et denotes current equity earnings, g(St) represents growth as a function of the state
St, Q(St) is a measure of firm-specific quality, Ct is a coupon-like payout for a bond, L(t) is
a loss or default probability, and D(πt) captures inflation-related effects.

To avoid arbitrage, the discounted payoff of an asset derived from these value formulas
must not allow the creation of a riskless profit by combining or decomposing equity and
bond claims on the same underlying cash flows. Formally, if a portfolio that synthetically
replicates a firm’s unlevered cash flows were to produce higher payoffs under one specification
(equity) than under another (bond) while facing the same risk, an arbitrage condition would
emerge. Therefore, we impose constraints on g(St), L(t), and D(πt) to ensure that neither
the equity-related nor the bond-related part of the firm’s cash flows produces a strictly higher
payoff without corresponding risk exposure.

4 Mathematical Framework Refinement

4.1 Extended State-Space Dynamics with Jumps

We define a state vector,

St =
[
gt, πt, rt, λt, θt

]⊤
,

where gt represents growth, πt denotes inflation, rt is the risk-free rate, λt is a measure of the
market price of risk or risk aversion, and θt is a factor capturing cross-asset correlations. In
earlier versions of the framework, the dynamics of the combined system, consisting of V (t)
and S(t), were modeled in a linear fashion:

[
V (t+ 1), S(t+ 1)

]
= F

[
V (t), S(t)

]
+ Σ(t) ε(t+ 1).

This linear model captures incremental changes in both the value functions and the state
variables.

In order to incorporate abrupt regime changes or jumps in risk perception, we enrich this
specification as follows:

[
V (t+ 1), S(t+ 1)

]
= F

[
V (t), S(t)

]
+ Σ(t) ε(t+ 1) + Γ(t) J(t+ 1),

where Γ(t) translates the size of the jump or regime shift into changes in V (t) and S(t),
and J(t + 1) is a jump process that may be represented by a Poisson random variable or a
Markov-switching regime indicator. This extended specification addresses phenomena such
as flight-to-quality spikes, where the correlation between equities and bonds may suddenly
shift, as well as crises where default probabilities or market risk aversion can jump sharply.

4.2 Unified Pricing Kernel

We employ a consumption-based or CRRA-type pricing kernel:

M(t, t+ 1) = β
(

Ct+1

Ct

)−γ

exp
{
−λ(St)

⊤ Σ(t) ε(t+ 1)
}
,
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where β is the discount factor,
(

Ct+1

Ct

)−γ

captures time-varying marginal utility of consump-

tion for a CRRA investor, and λ(St) interacts with Σ(t) ε(t + 1) to represent the state-
dependent pricing of risk. By design, this kernel is applied uniformly to the discounted
value of both equity and bond payoffs, ensuring consistency across the two asset classes and
eliminating opportunities for arbitrage that might arise if different discount rates were used.

4.3 Price Formation for Equities and Bonds

Under this unified approach, the price of an equity is given by

Pe(t) = Et

[ ∞∑
s=t+1

M(t, s)
(
Vs +R(s)

)]
+ Et

[
M(t,∞)T (∞)

]
,

where R(s) represents dividends or other near-term payouts, and T (∞) can be a terminal
value in perpetuity or liquidation value. For bonds, the price becomes

Pb(t) = Et

[ T∑
s=t+1

M(t, s)Vs

]
+ Et

[
M(t, T ) Principal

]
,

where Vs here includes coupon-related value at each future date, and the principal is repaid
(assuming no default) at maturity T . In both cases, jumps or regime changes affect expected
future payouts through Vs and change the discount factor throughM(t, s), allowing the model
to capture the abrupt price movements often witnessed in real markets.

5 Portfolio Optimization

Consider a portfolio consisting of equities and bonds, with values Ve(t) and Vb(t) respectively,
and weights we and wb. The total portfolio value at time t is

Vp(t) = w⊤
e Ve(t) + w⊤

b Vb(t).

The goal is to maximize expected utility of the terminal portfolio value Vp(T ):

max
we,wb

E
[
U
(
Vp(T )

)]
subject to we + wb = 1 and we, wb ≥ 0.

In dynamic settings, where flight-to-quality behavior or regime shifts can abruptly alter the
correlation structure captured by Σ(t) and Γ(t) J(t+1), the portfolio weights may be recal-
ibrated to adapt to the new market environment. This dynamic perspective acknowledges
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The goal is to maximize expected utility of the terminal portfolio 
value Vp(T):

In dynamic settings, where flight-to-quality behavior or regime 
shifts can abruptly alter the correlation structure captured by 
Σ(t) and Γ(t) J (t+1), the portfolio weights may be recalibrated to 
adapt to the new market environment. This dynamic perspective 
acknowledges that both the payoffs and the risk premia for equities 
and bonds may move in concert, particularly in stress regimes.

6. Empirical Strategy
6.1 Two-Step Kalman Filtering for State Estimation
To implement and estimate the proposed model, we suggest a two-
step Kalman filtering procedure, as outlined in the pseudocode 
below:

def estimate_states(data, params):
"""
Two-step Kalman Filter for Macro + Asset States
" " "
# 1) Estimate Macro States
kf_macro = KalmanFilter(
state_transition=derive_transition_matrix(params,for_mac-
ro=True),
observation_matrix=derive_observation_matrix(params, mac-
ro_obs=True)
)
states_macro = kf_macro.filter(data.macro_data)
# 2) Estimate Full States (Incorporating Asset Prices)
kf_full = KalmanFilter(
state_transition=derive_transition_matrix(params,for_
full=True),
observation_matrix=derive_observation_matrix(params, as-
set_obs=True)
)
states_full = kf_full.filter(data.asset_data, initial_state=states_
macro[-1])
return states_full

In the first step, macroeconomic variables such as GDP growth, 
inflation, and interest rates are used to filter out the underlying 
growth component gt, inflation πt, and risk aversion λt. In the sec-
ond step, the filtered macro states are used as an initial foundation 
when incorporating equity and bond price data. This hierarchical 
approach allows the model to disentangle the macroeconomic 
environment from asset-specific signals, providing a more stable 
identification of the cross-asset factor θt.

6.2 Handling Regime or Jump Dynamics
When including the jump or regime-switching component Γ(t) J 

(t+1), it may be necessary to use extensions of the Kalman filter 
designed for non-linear or switching processes. One can adopt a 
Markov-switching Kalman filter or a Hamilton filter if jumps fol-
low a Markov process, or turn to particle filters for more general 
jump specifications. These methods can better capture episodes 
where large shocks alter default probabilities or market percep-
tions in a discrete manner.

6.3 Calibration and Model Validation
Researchers and practitioners can calibrate the functions g(St), 
λ(St), L(t), and D(πt) by maximizing the likelihood of the observed 
macro and asset prices, or by employing Bayesian methods with 
informative priors if so desired. Validation of the model involves 
comparing the implied bond yields, equity returns, and correlation 
structures to their real-world counterparts over both in-sample and 
out-of-sample periods. In particular, one can test how effectively 
the model anticipates shifts in flight-to-quality behavior, by exam-
ining changes in correlations and price dynamics during known 
stress episodes.

7. From Mean–Variance to the New Approach
Traditional mean–variance portfolio construction proceeds by 
specifying an expected return vector and a covariance matrix, then 
solving a quadratic optimization problem. Formally, weights w are 
selected to maximize

subject to the sum of weights being one. Although this approach 
has proven useful over decades, it assumes the expected return and 
covariance estimates remain stable or can be estimated from his-
torical data.

We outline a method to bridge mean–variance with our state-based 
framework by approximating the state-dependent returns through 
a linearization. If rt(St) is the return function and St is the state vec-
tor, we can expand rt(St) around a baseline S0:

Using the Kalman filter estimates of St, practitioners can derive 
implied means and covariances of returns, µ* and Σ*, which can 
be fed into a conventional mean–variance optimizer. Re-optimiz-
ing these parameters periodically (or whenever a regime shift is 
detected) ensures the portfolio construction remains responsive to 
the time-varying risk environment modeled in our framework.

8. Practical Implementation Guidelines
8.1 Handling Parameter Instability
It is important to note that parameter estimates may change over 
time, particularly if market conditions evolve or if there are multi-
ple structural breaks. In practice, users may employ rolling or ex-
panding windows to recalibrate the state transition and observation 
matrices. They may also incorporate outlier detection techniques 
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captures time-varying marginal utility of consump-

tion for a CRRA investor, and λ(St) interacts with Σ(t) ε(t + 1) to represent the state-
dependent pricing of risk. By design, this kernel is applied uniformly to the discounted
value of both equity and bond payoffs, ensuring consistency across the two asset classes and
eliminating opportunities for arbitrage that might arise if different discount rates were used.

4.3 Price Formation for Equities and Bonds

Under this unified approach, the price of an equity is given by
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where R(s) represents dividends or other near-term payouts, and T (∞) can be a terminal
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where Vs here includes coupon-related value at each future date, and the principal is repaid
(assuming no default) at maturity T . In both cases, jumps or regime changes affect expected
future payouts through Vs and change the discount factor throughM(t, s), allowing the model
to capture the abrupt price movements often witnessed in real markets.

5 Portfolio Optimization

Consider a portfolio consisting of equities and bonds, with values Ve(t) and Vb(t) respectively,
and weights we and wb. The total portfolio value at time t is

Vp(t) = w⊤
e Ve(t) + w⊤

b Vb(t).

The goal is to maximize expected utility of the terminal portfolio value Vp(T ):
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subject to we + wb = 1 and we, wb ≥ 0.

In dynamic settings, where flight-to-quality behavior or regime shifts can abruptly alter the
correlation structure captured by Σ(t) and Γ(t) J(t+1), the portfolio weights may be recal-
ibrated to adapt to the new market environment. This dynamic perspective acknowledges
that both the payoffs and the risk premia for equities and bonds may move in concert,
particularly in stress regimes.
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methods with informative priors if so desired. Validation of the model involves comparing
the implied bond yields, equity returns, and correlation structures to their real-world coun-
terparts over both in-sample and out-of-sample periods. In particular, one can test how
effectively the model anticipates shifts in flight-to-quality behavior, by examining changes
in correlations and price dynamics during known stress episodes.

7 From Mean–Variance to the New Approach

Traditional mean–variance portfolio construction proceeds by specifying an expected return
vector and a covariance matrix, then solving a quadratic optimization problem. Formally,
weights w are selected to maximize

w⊤µ− κ

2
w⊤Σw,

subject to the sum of weights being one. Although this approach has proven useful over
decades, it assumes the expected return and covariance estimates remain stable or can be
estimated from historical data.

We outline a method to bridge mean–variance with our state-based framework by approx-
imating the state-dependent returns through a linearization. If r̃t(St) is the return function
and St is the state vector, we can expand r̃t(St) around a baseline S0:

r̃t(St) ≈ r̃t(S0) +∇Sr̃t(S0)
(
St − S0

)
.

Using the Kalman filter estimates of St, practitioners can derive implied means and covari-
ances of returns, µ∗ and Σ∗, which can be fed into a conventional mean–variance optimizer.
Re-optimizing these parameters periodically (or whenever a regime shift is detected) ensures
the portfolio construction remains responsive to the time-varying risk environment modeled
in our framework.

8 Practical Implementation Guidelines

8.1 Handling Parameter Instability

It is important to note that parameter estimates may change over time, particularly if market
conditions evolve or if there are multiple structural breaks. In practice, users may employ
rolling or expanding windows to recalibrate the state transition and observation matrices.
They may also incorporate outlier detection techniques to distinguish genuine regime shifts
from transient noise or anomalous data points.

8.2 Dealing with Regime Changes

Because regimes can shift rapidly, practitioners can apply Markov-switching Kalman filters
or Hamilton filters when there is reason to believe that different macroeconomic regimes
appear according to a Markov process. Alternatively, if data suggests more random or
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to distinguish genuine regime shifts from transient noise or anom-
alous data points.

8.2 Dealing with Regime Changes
Because regimes can shift rapidly, practitioners can apply Mar-
kov-switching Kalman filters or Hamilton filters when there is 
reason to believe that different macroeconomic regimes appear ac-
cording to a Markov process. Alternatively, if data suggests more 
random or discrete jumps in key state variables, particle filters can 
be deployed to capture the multimodal distribution of jumps. Ear-
ly warning indicators, such as credit spreads or volatility indices, 
can serve as triggers to intensify the jump processes through Γ(t) 
during periods of heightened market stress.

8.3 Computational Efficiency
In large-scale or high-frequency scenarios, computational efficien-
cy becomes a critical concern. Techniques such as vectorization in 
NumPy or JAX can speed up the linear algebra operations required 
by the Kalman filter, and parallelization can be pursued for particle 
filtering in more advanced jump models. These optimizations are 
essential to ensure that real-time or near-real-time risk assessment 
remains feasible in practice.

8.4 Linking Theory to Practice
In practical settings, macro data might be available at monthly or 
quarterly intervals, while market data for equities and bonds may 
be updated daily or weekly. Researchers should therefore pay spe-
cial attention to aligning the Kalman filter state updates with the 
actual data frequencies, possibly by using bridging or interpolation 
techniques. In communicating results, it can be helpful to summa-
rize the model output as approximate means and covariances, al-
lowing practitioners more accustomed to mean–variance methods 
to interpret and act on the results without having to fully rewrite 
existing processes.

9. Discussion of Academic Contribution
The theoretical and empirical contributions of this framework can 
be summarized by highlighting four main advances. First, the ex-
plicit no-arbitrage constraints across equity and bond valuations 
mark a step forward in ensuring that a single discounting mech-
anism cannot be exploited through trivial manipulations of either 
asset class. Second, the introduction of a jump or regime-switching 
component Γ(t) J (t + 1) systematically accounts for flight-toqual-
ity phenomena and abrupt correlation changes that have been 
well-documented in crisis periods. Third, the proposed two-step 
Kalman filter procedure clarifies a practical route for combining 
macroeconomic and asset-level data in a robust manner, thereby 
strengthening the operational viability of the model. Fourth, the 
discussion of bridging the new framework with traditional mean–
variance provides a valuable method for practitioners to gradually 
incorporate state-space insights into existing portfolio manage-
ment strategies.

10. Conclusion
This paper refines and strengthens a unified cross-asset framework 
that distinguishes intrinsic asset value from its market price and 

applies a coherent pricing kernel to both equity and bond valua-
tion. We have demonstrated how no-arbitrage can be enforced by 
ensuring that separate formulas for equity and bond values cannot 
be combined to generate riskless profit. The core framework has 
been extended to allow for jumps or regime shifts, capturing the 
type of abrupt price and correlation changes frequently observed 
during market stress. A twostep Kalman filtering approach was 
proposed to handle state estimation, and we explained how rolling, 
expanding, or switching methods can be applied to accommodate 
parameter instability over time.

We also outlined how practitioners, accustomed to convention-
al mean–variance portfolio construction, can integrate the richer 
state-based model into their existing workflows through linear-
ization of state-dependent returns and periodic re-optimization. 
Future studies could expand the framework to include addition-
al asset classes such as credit, foreign exchange, or commodities. 
Moreover, exploring robust optimization under parametric uncer-
tainty might help further mitigate the risk of miscalibration, espe-
cially when historical data offers limited insight into the frequency 
or magnitude of tail events. Overall, these refinements and practi-
cal guidelines underscore the feasibility of a comprehensive mac-
ro-finance model that unifies multiple asset classes under a single 
economic umbrella, thereby offering coherent valuation, dynamic 
portfolio management, and deeper insights into cross-asset risk.
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